Skip to main content
Log in

Mathematical Study of Realistic Removal Rates of Non-metallic Inclusions in Continuous Casting Tundish Using Optimized Criterion

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The cleanliness of high-quality steel largely depends on the distribution and characteristics of non-metallic inclusions. The removal of inclusions in the tundish can be studied by simulation, but the traditional criterion tends to predict high removal rates. In this study, the touched inclusion fraction at the free surface of the tundish was analyzed by considering the fundamental forces acting on the inclusions. An optimized criterion based on the direction of the inclusion balance force was established to judge the inclusion removal behavior. The simulation results obtained using the optimized criterion were more consistent with actual industrial trial results. In addition, the connection between the removal behaviors of inclusions of different sizes and flow time of liquid steel was studied using the new criterion. The optimized criterion for inclusion removal created a prerequisite for improving the combined model and dead zone volume. The method for calculating the dead zone volume was upgraded.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Sahai: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2095–2106.

    Article  Google Scholar 

  2. Y. Miki and B.G. Thomas: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 639–54.

    Article  CAS  Google Scholar 

  3. K. Chattopadhyay, M. Isac, and R.I. Guthrie: ISIJ Int., 2011, vol. 50, pp. 331–48.

    Article  Google Scholar 

  4. D. Mazumdar: Steel Res. Int., 2019, vol. 90, p. 1800279.

    Article  Google Scholar 

  5. H. Tanaka, R. Nishihara, R. Miura, R. Tsujino, T. Kimura, and T. Nishi: ISIJ Int., 1994, vol. 34, pp. 868–75.

    Article  CAS  Google Scholar 

  6. K. Chattopadhyay, M. Isac, and R.I. Guthrie: ISIJ Int., 2011, vol. 51, pp. 573–80.

    Article  CAS  Google Scholar 

  7. C. Gu, W.Q. Liu, J.H. Lian, and Y.P. Bao: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 826–34.

    Article  Google Scholar 

  8. W. Xiao, Y.P. Bao, C. Gu, M. Wang, Y. Liu, and Y.S. Huang: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 804–15.

    Article  Google Scholar 

  9. C. Liu, R.I. Revilla, D.W. Zhang, Z.Y. Liu, A. Lutz, and F. Zhang: Corros. Sci., 2018, vol. 138, pp. 96–104.

    Article  CAS  Google Scholar 

  10. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333–46.

    Article  CAS  Google Scholar 

  11. C.J. Hua, Y.P. Bao, and M. Wang: Powder Technol., 2021, vol. 393, pp. 405–20.

    Article  CAS  Google Scholar 

  12. C.B. Shi, X.C. Chen, and H.J. Guo: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 295–302.

    Article  CAS  Google Scholar 

  13. J.H. Park: Mat Sci Eng A-Struct, 2008, vol. 472, pp. 43–51.

    Article  Google Scholar 

  14. K.H. Tacke and J.C. Ludwig: Steel Res. Int., 1987, vol. 58, pp. 262–70.

    Article  CAS  Google Scholar 

  15. A.W. Cramb and I. Jimbo: Steel Res. Int., 1989, vol. 60, pp. 157–65.

    Article  CAS  Google Scholar 

  16. Y. Chung and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 957–71.

    Article  CAS  Google Scholar 

  17. M. Valdez, K. Prapakorn, and A.W. Cramb: Ironmak. Steelmak., 2002, vol. 29, pp. 47–52.

    Article  CAS  Google Scholar 

  18. P.Y. Ni, L.T. Jonsson, M. Ersson, and P.G. Jönsson: Steel Res. Int., 2017, vol. 88, p. 1600155.

    Article  Google Scholar 

  19. S.K. Ray, M. Isac, and R.I.L. Guthrie: Ironmak. Steelmak., 2011, vol. 38, pp. 173–80.

    Article  CAS  Google Scholar 

  20. S. García Hernández, J.D.J. Barreto, J.A. Ramos Banderas, and G. Solorio Diaz: Steel Res. Int., 2010, vol. 81, pp. 453–60.

    Article  Google Scholar 

  21. K. Takahashi, M. Ando, and T. Ishii: ISIJ Int., 2014, vol. 54, pp. 304–10.

    Article  CAS  Google Scholar 

  22. Q. Yue, C.B. Zhang, and X.H. Pei: Ironmak. Steelmak., 2017, vol. 44, pp. 227–36.

    Article  CAS  Google Scholar 

  23. A. Cwudziński: Steel Res. Int., 2010, vol. 81, pp. 123–31.

    Article  Google Scholar 

  24. C. Yao, M. Wang, R.X. Zheng, M.X. Pan, J.Y. Rao, and Y.P. Bao: Metals, 2020, vol. 10, p. 1111.

    Article  Google Scholar 

  25. A. Kumar, D. Mazumdar, and S.C. Koria: ISIJ Int., 2008, vol. 48, pp. 38–47.

    Article  CAS  Google Scholar 

  26. D.Y. Sheng: Metals, 2020, vol. 10, p. 1213.

    Article  Google Scholar 

  27. C. Liu, S.F. Yang, J.S. Li, L.B. Zhu, and X.G. Li: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1882–92.

    Article  Google Scholar 

  28. S.F. Yang, J.S. Li, C. Liu, L.Y. Sun, and H.B. Yang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2453–63.

    Article  Google Scholar 

  29. Y. Sahai and T. Emi: ISIJ Int., 1996, vol. 36, pp. 667–72.

    Article  CAS  Google Scholar 

  30. G.C. Wang, M.F. Yun, C.M. Zhang, and G.D. Xiao: ISIJ Int., 2015, vol. 55, pp. 984–92.

    Article  CAS  Google Scholar 

  31. J. Li, G.H. Wen, P. Tang, and M.M. Zhu: Ironmak. Steelmak., 2012, vol. 39, pp. 140–46.

    Article  CAS  Google Scholar 

  32. C. Yao, M. Wang, M.X. Pan, and Y.P. Bao: J. Iron Steel Res. Int., 2021, vol. 28, pp. 1114–24.

    Article  Google Scholar 

  33. E. Gutiérrez, S. Garcia-Hernandez, and J. Barreto: Steel Res. Int., 2019, vol. 90, p. 1900328.

    Article  Google Scholar 

  34. H.T. Ling, L.F. Zhang, and H. Li: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 2991–3012.

    Article  Google Scholar 

Download references

Competing Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 4, 2022; accepted February 12, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, C., Wang, M., Zhu, H. et al. Mathematical Study of Realistic Removal Rates of Non-metallic Inclusions in Continuous Casting Tundish Using Optimized Criterion. Metall Mater Trans B 54, 1144–1158 (2023). https://doi.org/10.1007/s11663-023-02750-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02750-3

Navigation