Skip to main content
Log in

Radiometric Temperature Measurement of Copper Concentrates in Flash Smelting Conditions Simulated at Laboratory Scale Coupled With a Macroscopic Chemical Reaction Model and Automated Mineralogical Characterization

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The study of flash combustion of copper concentrates has been traditionally approached from the phenomenological perspective by describing the physicochemical transformation at the particle level. Few works have focused on analyzing and modeling the behavior of flames produced by a cloud of particles under equivalent flash smelting furnace conditions. The present work aims to demonstrate the ability of non-invasive optoelectronic instrumentation to determine the temperature of the flame formed in a copper concentrate burner in flash smelting conditions at laboratory scale with a Drop Tube furnace. The temperatures measured with the optoelectronic system (Radiometric Temperature) were compared with the temperature obtained by the mass and heat transfer balance through global reactions of a set industrial copper concentrates (Measured Temperature). According to the mineral-chemical characterization of flash smelting products at a laboratory scale made with an automated mineralogy equipment, the radiometric temperatures are highly correlated with those calculated through the macroscopic chemical reaction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Prietl, A. Filzwieser, and S. Wallner, in 134th TMS Annueal Meeting, M.E Schlesinger, San Francisco, 2005, pp. 177–90.

  2. C. Romero, X. Li, S. Keyvan, and R. Rossow, Applied Thermal Engineering, 2005, vol. 25, p. 676.

  3. P. Gillard, C. de Izarra, and M. Roux: Propellants Explos. Pyrotech., 2002, vol. 27, pp. 80–87.

    Article  CAS  Google Scholar 

  4. S. Knapp, S. Kelzenberg, A. Raab, E. Roth, and V. Weiser: Propellants Explos. Pyrotech., 2019, vol. 44, pp. 9–17.

    Article  CAS  Google Scholar 

  5. V. Weiser and N. Eisenreich: Propellants Explos. Pyrotech., 2005, vol. 30, pp. 67–78.

    Article  CAS  Google Scholar 

  6. F. R. A. and Moyle Jorgensen, F. J., J. Therm. Anal. 1982, vol. 25, pp. 473–85.

  7. F. R. A. Jorgensen and M. Zuiderwyk, 1985, vol. 18.

  8. H.Y. Sohn and P.C. Chaubal: The Ignition and Combustion of Chalcopyrite Concentrate Particles under Suspension-Smelting Conditions, METALLURGICAL TRANSACTIONS, Salt Lake City, UTAH, Utah, 1993.

  9. N.E. Tuffrey, G.G. Richards, and J.K. Brimacombe: Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 1995, vol. 26, pp. 929–42.

    Article  Google Scholar 

  10. N.E. Tuffrey, G.G. Richards, and J.K. Brimacombe: Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 1995, vol. 26, pp. 943–58.

    Article  Google Scholar 

  11. N.E. Tuffrey, G.G. Richards, and J.K. Brimacombe: Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 1995, vol. 26, pp. 959–70.

    Article  Google Scholar 

  12. J. Sjöblom, H. Yliheljo, A. Jokilaakso and J. Yli-Penttilä, in Fourth International Conference COPPER 99 - COBRE 99, 1999, pp 449 - 462.

  13. E.J. Peuraniemi, J. Järvi, and A. Jokilaakso, in In Proceedings of the Copper 99, 1999, pp 463–76.

  14. T. Laurila, R. Oikari, T. Joutsrnoja, P. Mikkola, T. Ranki-Kilpinen, P. Taskinen, and R. Hernberg, Metall. Mater. Trans. B, 2005, pp 201–08.

  15. I. Wilkomirsky, A. Otero, and E. Balladares, 2010, vol. 41B.

  16. P.A. Bejarano and Y. A. Levendis, 2008, p. 287.

  17. P.A. Bejarano and Y.A. Levendis, 2007, vol. 179, p. 1587.

  18. R.A. Parra, V.R. Parra, E.R. Balladares, C.A. Loeza, C.M. Villagran, M. Perez, S. Torres, L. Arias, and D. Sbarbaro, 2016.

  19. R.A. Parra, V.R. Parra, E.R. Balladares, C.A. Loeza, C.M. Villagran, M. Perez, S. Torres, L. Arias, and D. Sbarbaro, Concepcion, 2016.

  20. C. Toro, S. Torres, V. Parra, R. Fuentes, R. Castillo, W. Diaz, G. Reyes, E. Balladares, and R. Parra: Sensors, 2020, vol. 20, p. 15.

    Google Scholar 

  21. W. Diaz, C. Toro, E. Balladares, V. Parra, P. Coelho, G. Reyes, and R. Parra: Metals, 2019, vol. 9, p. 12.

    Article  Google Scholar 

  22. I. Wilkomisky, R. Parra, F. Parada, E. Balladares, E. Seguel, J. Etcheverry, and R. Diaz, The Minerals, Metals & Materials Society, 2020.

  23. A. P. Sinha and Parameswar De: Mass Transfer: Principles and Operations, PHI Learning Private Limited, 2012, p. 616.

  24. A. Roine, HSC CHEMISTRY 8 [Software], Metso Outotec, 2021.

Download references

Acknowledgments

We thank the Metallurgical Engineering Department of the University of Concepcion for giving access to their facilities, allowing us to conduct the experiments reported in this work.

Author Contributions

Conceptualization, W.D, G.R, and C.T; methodology, W.D, G.R, and C.T; software, C.T; validation, W.D and G.R; formal analysis, W.D, G.R, and C.T; investigation, W.D and G.R; resources, R.P and E.B; data curation, G.R; writing—original draft preparation, W.D and G.R..; writing—review and editing, C.T, R.L, E.B, and R.P; visualization, W.D; supervision, C.T, E.B, and R.P; project administration, R.P; funding acquisition, E.B and R.P. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the CONICYT, Anillo Minería ACM170008, and by FONDEF IT under Grant Number 16M10029.

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gonzalo Reyes or Eduardo Balladares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, W., Reyes, G., Toro, C. et al. Radiometric Temperature Measurement of Copper Concentrates in Flash Smelting Conditions Simulated at Laboratory Scale Coupled With a Macroscopic Chemical Reaction Model and Automated Mineralogical Characterization. Metall Mater Trans B 53, 3967–3978 (2022). https://doi.org/10.1007/s11663-022-02657-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02657-5

Navigation