Skip to main content

Effects of High-Temperature Characteristics of Calcium Ferrites on the Sinter Strength

Abstract

Iron ore sinter is the main burden charged into the blast furnace. The liquid phase formed during the sintering process plays an important role in the agglomeration process, which affects the quality of the final product. The current study aims to clarify the effect of iron ores on the high-temperature characteristics of calcium ferrites (CFs). It was attempted to use two of the most common iron ores being used in the steel companies worldwide as the raw materials to prepare three kinds of CFs. The gangue components (SiO2, Al2O3) in the iron ores significantly affected the high-temperature characteristics of CF. By changing the CF used to assimilate with the sinter mix, the phases formed in the assimilated region were not significantly modified. For all the CFs, ‘SFCA-related’ phases were found to exist, which is believed that the sinter mix played the main role in the phase formation. Among several high-temperature characteristics, a melt index was newly suggested where its linear relationship coefficient with the penetration length of CFs was calculated to be 0.863. CFs containing a significant amount of gangue showed a low fluidity index and high dissolution of sinter mix, which resulted in the decrease in melt index. This CF consequently had low penetration depth into the sinter mix, which might jeopardize the agglomeration process of the sinter mix. The addition of all kinds of CFs to the standard sinter mix improved the compressive strength of the sinter. However, the strengthening behavior depends on the type and amount of CF.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. T. Maeda, K. Nishioka, K. Nakashima, and M. Shimizu: ISIJ Int., 2004, vol. 44(12), pp. 2046–51.

    CAS  Article  Google Scholar 

  2. K. Nakashima, N. Saito, S. Shinozaki, R. Tanaka, T. Maeda, M. Shimizu, and K. Mori: ISIJ Int., 2004, vol. 44(12), pp. 2052–56.

    CAS  Article  Google Scholar 

  3. S. Wu, D. Oliveira, Y. Dai, J. Xu, and H. Chen: Adv. Mater. Res., 2011, vol. 201–203, pp. 1780–86.

    Article  Google Scholar 

  4. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1344–57.

    Article  Google Scholar 

  5. T.J. Park, B.C. Kim, and I. Sohn: Steel Res. Int., 2021, vol. 92(2100206), pp. 1–7.

    Google Scholar 

  6. S. Yoshimura, K. Kurosawa, Y. Gonda, S. Sukenaga, N. Saito, and K. Nakashima: ISIJ Int., 2009, vol. 49(5), pp. 687–92.

    CAS  Article  Google Scholar 

  7. X. Ding and X. Guo: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1742–50.

    Article  Google Scholar 

  8. X. Jiang, J. Zhao, L. Wang, H. An, Q. Gao, H. Zheng, and F. Shen: ISIJ Int., 2021, vol. 61(1), pp. 86–92.

    CAS  Article  Google Scholar 

  9. H. Noda, H. Yanaka, R. Yamamoto, H. Kawata, and Y. Yamaoka: Trans. ISIJ, 1985, vol. 25(11), pp. 1103–10.

    CAS  Article  Google Scholar 

  10. D. Oliveira, S. Wu, Y. Dai, J. Xu, and H. Chen: J. Iron Steel Res. Int., 2012, vol. 19(6), pp. 1–5.

    CAS  Article  Google Scholar 

  11. S. Wu, G. Zhang, S. Chen, and B. Su: ISIJ Int., 2014, vol. 54(3), pp. 582–88.

    CAS  Article  Google Scholar 

  12. R. Mezibricky, M. Frohlichova, R. Findorak, and V. Sue Goettgens: Minerals, 2019, vol. 9(2), pp. 128–52.

    CAS  Article  Google Scholar 

  13. S. Wu, H. Han, H. Li, J. Xu, S. Yang, and X. Liu: Int. J. Miner. Metall. Mater., 2010, vol. 17(1), pp. 11–16.

    CAS  Article  Google Scholar 

  14. D. Fernandez-Gonzalez, I. Ruiz-Bustinza, J. Mochon, C. Gonzalez-Gasca, and L.F. Verdeja: Miner. Process. Extr. Metall. Rev., 2017, vol. 38(4), pp. 254–64.

    CAS  Article  Google Scholar 

  15. S. Wu and X. Zhai: Metall. Res. Technol., 2018, vol. 115, pp. 505–20.

    CAS  Article  Google Scholar 

  16. S. Wu, H. Li, W. Zhang, and B. Su: Metals, 2019, vol. 9(4), pp. 404–16.

    CAS  Article  Google Scholar 

  17. J. Okazaki, K. Higuchi, Y. Hosotani, and K. Shinagawa: ISIJ Int., 2003, vol. 43(9), pp. 1384–92.

    CAS  Article  Google Scholar 

  18. K. Higuchi, J. Okazaki, and S. Nomura: ISIJ Int., 2020, vol. 60(4), pp. 674–81.

    CAS  Article  Google Scholar 

  19. Japan Industrial Standard (JIS): Iron ores – Method for determination of acid soluble iron (II) content (JIS Standard No. M8213:1995).

  20. International Organization for Standardization (ISO): Iron ores – Determination of various elements – Inductively coupled plasma atomic emission spectrometric method (ISO Standard No. 11535: 2006).

  21. Y. Qu, Y. Yang, Z. Zou, C. Zeilstra, K. Meijer, and R. Boom: ISIJ Int., 2014, vol. 54(10), pp. 2196–205.

    CAS  Article  Google Scholar 

  22. B. Phillips and A. Muan: J. Am. Ceram. Soc., 1958, vol. 41(11), pp. 445–54.

    CAS  Article  Google Scholar 

  23. L. Hsieh and J.A. Whiteman: ISIJ Int., 1989, vol. 29(1), pp. 24–32.

    CAS  Article  Google Scholar 

  24. V.K. Pandey, R.K. Duchaniya, U. Pandel, and S. Yadav: AIP Conf. Proc., 2019, vol. 2148(030014), pp. 1–6.

    Google Scholar 

  25. S. Sukenaga, K. Ohara, H. Yamada, T. Wakihara, and H. Shibata: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1945–49.

    Article  Google Scholar 

  26. N.V.Y. Scarlett, M.I. Pownceby, I.C. Madsen, and A.N. Christensen: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 929–36.

    CAS  Article  Google Scholar 

  27. S. Nicol, J. Chen, M.I. Pownceby, and N.A.S. Webster: ISIJ Int., 2018, vol. 58(12), pp. 2157–72.

    CAS  Article  Google Scholar 

  28. W. Wang, D. Yang, Z. Ou-yang, R. Xu, and M. Song: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 678–87.

    Article  Google Scholar 

  29. S. Nicol, E. Jak, and P.C. Hayes: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2706–22.

    Article  Google Scholar 

  30. S. Nicol, E. Jak, and P.C. Hayes: Metall. Mater. Trans. B, 2019, vol. 50, pp. 3027–38.

    CAS  Article  Google Scholar 

  31. R.F. Xin and X.M. Guo: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1904–19.

    Article  Google Scholar 

  32. R.M. German, P. Suri, and S.J. Park: J. Mater. Sci., 2009, vol. 44, pp. 1–39.

    CAS  Article  Google Scholar 

  33. G. Wang, J. Zhang, Z. Liu, Y. Wang, Y. Li, and B. Zhang: Metall. Mater. Trans. B, 2022, https://doi.org/10.1007/s11663-022-02514-5.

    Article  Google Scholar 

  34. R.K. Dishwar, A.K. Mandal, and O.P. Sinha: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 617–21.

    Article  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Mo Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tomas da Rocha, L., Cho, S., Kim, SW. et al. Effects of High-Temperature Characteristics of Calcium Ferrites on the Sinter Strength. Metall Mater Trans B 53, 3306–3321 (2022). https://doi.org/10.1007/s11663-022-02612-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02612-4