Skip to main content

Scanning Electron Microscopy-Cathodoluminescence Imaging of Industrial Steelmaking Slag for Identifying and Determining the Free Magnesia Content

Abstract

The reuse of steelmaking slag is a crucial step to protect the environment. However, steelmaking slag can cause road cracking when reused for road construction owing to the volumetric expansion of its free magnesia (f-MgO) content related to the hydration reaction. A method for rapidly determining the f-MgO content is not well established. The authors present a method for rapidly identifying and determining the f-MgO content of industrial steelmaking slag using a scanning microscopy-cathodoluminescence (SEM-CL) instrument. The colors of CL images and contrast of backscattered electron (BSE) images can be used to distinguish f-MgO from other minerals in the slag, such as MgO·Al2O3 spinel, merwinite, pseudowollastonite, and melilite by observing areas with dark gray in the BSE image contrast and no luminescence color in CL images at 420 to 680 nm wavelength. The f-MgO content can then be determined according to the areas of f-MgO identified in the BSE and CL images. In experiments, the BSE and CL images were acquired within 10 seconds. Thus, the proposed method can be used to rapidly determine the f-MgO content in industrial steelmaking slag.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. D.I. Stewart, A.W. Bray, G. Udoma, A.J. Hobson, W.M. Mayes, M. Rogerson, and I.T. Burke: Environ. Sci. Pollut. Res. Int., 2018, vol. 25, pp. 9861–872.

    CAS  Article  Google Scholar 

  2. Y. Jiang, T.-C. Ling, C. Shi, and S.-Y. Pan: Resour. Conserv. Recycl., 2018, vol. 136, pp. 187–97.

    Article  Google Scholar 

  3. L.V. Fisher and A.R. Barron: Resour. Conserv. Recycl., 2019, vol. 146, pp. 244–55.

    Article  Google Scholar 

  4. L.M. Juckes: Trans. Inst. Min. Metall. Sect. C, 2003, vol. 112, pp. 177–97.

    Google Scholar 

  5. S.-Y. Pan, R. Adhikari, Y.-H. Chen, P. Li, and P.-C. Chiang: J. Clean. Prod., 2016, vol. 137, pp. 617–31.

    CAS  Article  Google Scholar 

  6. C. Kambole, P. Paige-Green, W.K. Kupolati, J.M. Ndambuki, and A.O. Adeboje: Constr. Build. Mater., 2017, vol. 148, pp. 618–31.

    CAS  Article  Google Scholar 

  7. İ Yüksel: Environ. Dev. Sustain., 2017, vol. 19, pp. 369–84.

    Article  Google Scholar 

  8. T.S. Naidu, C.M. Sheridan, and L.D. van Dyk: Miner. Eng., 2020, vol. 149, 106234.

    CAS  Article  Google Scholar 

  9. Q. Dong, G.T. Wang, X.Q. Chen, J. Tan, and X.Y. Gu: J. Clean Prod., 2021, vol. 282, 124447.

    CAS  Article  Google Scholar 

  10. S. Chatterji: Cem. Concr. Res., 1995, vol. 25, pp. 51–6.

    CAS  Article  Google Scholar 

  11. L.F. Amaral, I.R. Oliveira, P. Bonadia, R. Salomão, and V.C. Pandolfelli: Ceram. Int., 2011, vol. 37, pp. 1537–542.

    CAS  Article  Google Scholar 

  12. R. Inoue, M. Uchidate, S. Kusukawa, N. Kado, Y. Takasaki, and S. Ueda: J. Sustain. Metall., 2021, vol. 7, pp. 818–30.

    Article  Google Scholar 

  13. M. Gautier, J. Poirier, F. Bodénan, G. Franceschini, and E. Véron: Int. J. Miner. Process., 2013, vol. 123, pp. 94–101.

    CAS  Article  Google Scholar 

  14. P.K. Mehta: In Cement Standards—Evolution and Trends, 1978, pp 353526.

  15. S. Ramachandra Rao: In Resource Recovery and Recycling from Metallurgical Wastes, 2006, pp 329–74.

  16. L. Mo, M. Deng, and M. Tang: Cem. Concr. Res., 2010, vol. 40, pp. 437–46.

    CAS  Article  Google Scholar 

  17. F.M.L.A.C.H. Desch: The Chemistry of Cement and Concrete, 2nd ed. Edward Arnold, London, 1935.

    Google Scholar 

  18. P. Arjunan and A. Kumar: Cem. Concr. Res., 1994, vol. 24, pp. 343–52.

    CAS  Article  Google Scholar 

  19. F.M. Lea: Edward Arnold: Glasgow, 1970, vol. 14, pp. 111–12.

    Google Scholar 

  20. K. Kanehashi and M. Aimoto: Tetsu To Hagane-J. Iron Steel Inst. Jpn, 2013, vol. 99, pp. 543–51.

    CAS  Article  Google Scholar 

  21. M.A.Y. Fujioka and M. Nishifuji: CAMP-ISIJ, 2009, vol. 22, p. 683.

    Google Scholar 

  22. K. Hanada, M. Inose, S. Sato, K. Watanabe, and K. Fujimoto: Tetsu To Hagane-J. Iron Steel Inst. Jpn, 2016, vol. 102, pp. 24–8.

    Article  Google Scholar 

  23. M. Kato, K. Tsukagoshi, M. Aimoto, S. Saito, and M. Shibukawa: ISIJ Int., 2018, vol. 58, pp. 1834–39.

    CAS  Article  Google Scholar 

  24. S. Imashuku, H. Tsuneda, and K. Wagatsuma: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 27–34.

    Article  CAS  Google Scholar 

  25. H. Tsuneda, S. Imashuku, and K. Wagatsuma: Tetsu To Hagane-J Iron Steel Inst. Jpn., 2019, vol. 105, pp. 522–29.

    Article  Google Scholar 

  26. S. Imashuku and K. Wagatsuma: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2003–011.

    Article  CAS  Google Scholar 

  27. S. Imashuku, M. Nagasako, and K. Wagatsuma: Microsc. Microanal., 2021, vol. 27, pp. 484–90.

    CAS  Article  Google Scholar 

  28. S. Imashuku and K. Wagatsuma: ISIJ Int., 2022, vol. 62, pp. 941–47.

    CAS  Article  Google Scholar 

  29. H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan, and H. Chen: Procedia Environ. Sci., 2012, vol. 16, pp. 791–801.

    CAS  Article  Google Scholar 

  30. S. Chand, B. Paul, and M. Kumar: Metallurgist, 2016, vol. 60, pp. 116–28.

    Article  Google Scholar 

  31. C. Shi: J. Mater. Civ. Eng., 2004, vol. 16, pp. 230–36.

    CAS  Article  Google Scholar 

  32. N.M. Piatak, M.B. Parsons, and R.R. Seal: Appl. Geochem., 2015, vol. 57, pp. 236–66.

    CAS  Article  Google Scholar 

  33. S. Imashuku, K. Ono, and K. Wagatsuma: X-Ray Spectrom., 2017, vol. 46, pp. 131–35.

    CAS  Article  Google Scholar 

  34. S. Imashuku, K. Ono, R. Shishido, S. Suzuki, and K. Wagatsuma: Mater. Charact., 2017, vol. 131, pp. 210–16.

    CAS  Article  Google Scholar 

  35. S. Imashuku and K. Wagatsuma: Corros. Sci., 2019, vol. 154, pp. 226–30.

    CAS  Article  Google Scholar 

  36. S. Imashuku and K. Wagatsuma: Miner. Eng., 2020, vol. 151, 106317.

    CAS  Article  Google Scholar 

  37. S. Imashuku and K. Wagatsuma: Miner. Eng., 2021, vol. 173, 107228.

    CAS  Article  Google Scholar 

  38. V.D. Eisenhüttenleute: Slag Atlas, 2nd ed. Verlag Stahleisen, Düsseldorf, 1995, pp. 44.

  39. P.Y. Mahieux, J.E. Aubert, G. Escadeillas, and M. Measson: J. Mater. Civ. Eng., 2014, vol. 26, pp. 593–98.

    CAS  Article  Google Scholar 

  40. D. Mombelli, C. Mapelli, S. Barella, C. Di Cecca, G. Le Saout, and E. Garcia-Diaz: Process Saf. Environ. Prot., 2016, vol. 102, pp. 810–21.

    CAS  Article  Google Scholar 

  41. S. Imashuku, H. Tsuneda, and K. Wagatsuma: Spectrochim. Acta A, 2020, vol. 229, 117952.

    CAS  Article  Google Scholar 

  42. T.A. Vu, J. Götze, K. Burkhardt, J. Ulbricht, and D. Habermann: Int. Ceram., 1998, vol. 47, pp. 164–67.

    CAS  Google Scholar 

  43. M. Karakus, M.D. Crites, and M.E. Schlesinger: J. Microsc., 2000, vol. 200, pp. 50–8.

    CAS  Article  Google Scholar 

  44. C.M. MacRae and N.C. Wilson: Microsc. Microanal., 2008, vol. 14, pp. 184–204.

    CAS  Article  Google Scholar 

  45. R. Mlcak and A.H. Kitai: J. Lumin., 1990, vol. 46, pp. 391–96.

    CAS  Article  Google Scholar 

  46. R.L. Mohler and W.B. White: Mater. Res. Bull., 1994, vol. 29, pp. 1109–116.

    CAS  Article  Google Scholar 

  47. N. Mironova, V. Skvortsova, A. Smirnovs, and L. Čugunov: Opt. Mater., 1996, vol. 6, pp. 225–32.

    CAS  Article  Google Scholar 

  48. A. Tomita, T. Sato, K. Tanaka, Y. Kawabe, M. Shirai, K. Tanaka, and E. Hanamura: J. Lumin., 2004, vol. 109, pp. 19–24.

    CAS  Article  Google Scholar 

  49. M. Gaft, R. Reisfeld, and G. Panczer: Luminescence Spectroscopy of Minerals and Materials, Springer, Berlin, 2005.

    Google Scholar 

  50. K. Ramseyer and J. Mullis: In Cathodoluminscence in Geosciences, ed. M. Pagel, Barbin V., Blanc P. and Ohnenstetter D. Springer: Berlin, 2000, pp 177–91.

  51. S. Imashuku and K. Wagatsuma: J. Geochem. Explor., 2021, vol. 225, 106763.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Financial support for the present study was provided by JSPS KAKENHI Grant Number 22H01837. The authors would like to thank Nippon Steel Corp. for the supplies of steelmaking slag samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Imashuku.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 353 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imashuku, S., Wagatsuma, K. Scanning Electron Microscopy-Cathodoluminescence Imaging of Industrial Steelmaking Slag for Identifying and Determining the Free Magnesia Content. Metall Mater Trans B (2022). https://doi.org/10.1007/s11663-022-02609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-022-02609-z