Skip to main content
Log in

Evaluation of Calcium Treatment on Oxide and Sulfide Inclusions Through Modification Indexes

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, 37 industrial trials were conducted to examine the effect of Ca treatment on inclusion formation and transformation. The samples were taken from tundish and separated into three series based on their compositions. Three correlations between the steel chemistries and the amount as well as the composition of inclusions were determined through inclusion analysis using an automated SEM-EDS system and with the help of a segregation model. First, a modified Ca treatment index was introduced which correlated the composition of modified calcium aluminates to Ca, S, and Al content in the system. For modified Ca treatment index higher than 0.5, the calcium aluminates were found to contain more than 50 wt pct liquid phase. The second index was dimensionless Ca which signifies that the amount of CaS inclusions in a system depends on the thermodynamics stability of CaS. It was used to estimate the area fraction of CaS inclusions. The third index was related to the control of MnS inclusion formation using Ca treatment and it was found that the Ca, S and Mn contents can be used to predict the level of success of MnS inclusion control. Further, the phase of steel may have an impact on MnS inclusion formation. A method of integrating the correlations between steel chemistries and calcium aluminate, CaS, and MnS inclusions to determine the overall success in inclusion control was proposed, which has the potential of predicting the optimum Ca content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R.J.F.K. Larsen, K. Larsen, and R.J. Fruehan: Iron Steelmak., 1990, vol. 17, pp. 45–52.

    CAS  Google Scholar 

  2. D. Zhao, H. Li, C. Bao, and J. Yang: ISIJ Int., 2015, vol. 55, pp. 2115–24.

    Article  CAS  Google Scholar 

  3. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S.R. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 720–29.

    Article  CAS  Google Scholar 

  4. L.F. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271–91.

    Article  CAS  Google Scholar 

  5. J. Guo, S. Cheng, Z. Cheng, and L. Xin: Steel Res. Int., 2013, vol. 84, pp. 545–53.

    Article  CAS  Google Scholar 

  6. S.K. Choudhary and A. Ghosh: ISIJ Int., 2008, vol. 48, pp. 1552–59.

    Article  CAS  Google Scholar 

  7. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S. Story: Metall. Mater. Trans. B., 2011, vol. 42B, pp. 711–19.

    Article  CAS  Google Scholar 

  8. M.K. Sardar, S. Mukhopadhyay, U.K. Bandopadhyay, and S.K. Dhua: Steel Res. Int., 2007, vol. 78, pp. 136–40.

    Article  CAS  Google Scholar 

  9. B. Harcsik and G. Karoly: Steel Res. Int., 2013, vol. 84, pp. 129–35.

    Article  CAS  Google Scholar 

  10. L. Jiang, K. Cui, and H. Hänninen: J. Mater. Process. Technol., 1996, vol. 58, pp. 160–65.

    Article  Google Scholar 

  11. H. Yaguchi: J. Appl. Metalwork., 1986, vol. 4, pp. 214–25.

    Article  CAS  Google Scholar 

  12. C. Wang, X. Liu, J. Gui, Z. Du, Z. Xu, and B. Guo: Vacuum, 2020, vol. 174, p. 109209.

    Article  CAS  Google Scholar 

  13. M.A. Baker and J.E. Castle: Corros. Sci., 1993, vol. 34, pp. 667–82.

    Article  CAS  Google Scholar 

  14. M.N. Inés and G.A. Mansilla: Acta Microsc., 2013, vol. 22, pp. 20–25.

    Google Scholar 

  15. Q. Meng, G.S. Frankel, H.O. Colijn, and S.H. Goss: Nature, 2003, vol. 424, pp. 389–90.

    Article  CAS  Google Scholar 

  16. J. Xu, F. Huang, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1217–27.

    Article  CAS  Google Scholar 

  17. G. Yang and X. Wang: ISIJ Int., 2015, vol. 55, pp. 126–33.

    Article  CAS  Google Scholar 

  18. Y. Liu, L. Zhang, Y. Zhang, H. Duan, Y. Ren, and W. Yang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 610–26.

    Article  CAS  Google Scholar 

  19. K. Miao, A. Haas, M. Sharma, W. Mu, and N. Dogan: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 1612–23.

    Article  CAS  Google Scholar 

  20. Y. Higuchi, M. Numata, S. Fukagawa, and K. Shinme: ISIJ Int., 1996, vol. 36, pp. S151-54.

    Article  Google Scholar 

  21. Y. Ren, L.F. Zhang, and S. Li: ISIJ Int., 2014, vol. 54, pp. 2772–79.

    Article  CAS  Google Scholar 

  22. S. Abdelaziz, G. Megahed, I. El-Mahallawi, and H. Ahmed: Ironmak. Steelmak., 2009, vol. 36, pp. 432–41.

    Article  CAS  Google Scholar 

  23. T. Yoshioka, Y. Shimamura, A. Karasev, Y. Ohba, and P.G. Jönsson: Steel Res. Int., 2017, vol. 88, pp. 1–9.

    Article  CAS  Google Scholar 

  24. W. Yang, L.F. Zhang, X. Wang, Y. Ren, X. Liu, and Q. Shan: ISIJ Int., 2013, vol. 53, pp. 1401–10.

    Article  CAS  Google Scholar 

  25. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830–40.

    Article  CAS  Google Scholar 

  26. Y. Wang, X. Sun, L. Zhang, and Y. Ren: J. Mater. Res. Technol., 2020, vol. 9, pp. 11351–60.

    Article  CAS  Google Scholar 

  27. S. Devi, R.K. Singh, N. Sen, and N. Pradhan: Mater. Sci. Forum, 2020, vol. 978, pp. 12–20.

    Article  Google Scholar 

  28. J. Li, G. Cheng, Q. Ruan, J. Li, J. Pan, and X. Chen: ISIJ Int., 2018, vol. 58, pp. 1042–51.

    Article  CAS  Google Scholar 

  29. X. Deng, C. Ji, S. Guan, L. Wang, J. Xu, Z. Tian, and Y. Cui: Ironmak. Steelmak., 2019, vol. 46, pp. 522–28.

    Article  CAS  Google Scholar 

  30. W. Yang, C. Guo, C. Li, and L. Zhang: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 2267–73.

    Article  CAS  Google Scholar 

  31. Z.W. Hou, M. Jiang, E.J. Yang, S.Y. Gao, and X.H. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3056–66.

    Article  CAS  Google Scholar 

  32. M. Herrera, F. Castro, M. Castro, M. Méndez, H. Solís, A. Castellá, and M. Barbaro: Ironmak. Steelmak., 2006, vol. 33, pp. 45–51.

    Article  CAS  Google Scholar 

  33. M. Imagumbai and T. Takeda: ISIJ Int., 1994, vol. 34, pp. 574–83.

    Article  CAS  Google Scholar 

  34. K. Miao, M. Nabeel, N. Dogan, and S. Sun: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 3151–66.

    Article  CAS  Google Scholar 

  35. S. Sun, S. Waterfall, N. Strobl, D. Liao, and D. Holdridge: Miner. Met. Mater. Ser., 2017, vol. F5, pp. 347–57.

    Google Scholar 

  36. S.R. Story, T.J. Piccone, R.J. Fruehan, and M. Potter: Iron Steel Technol., 2004, vol. 1, pp. 163–69.

    CAS  Google Scholar 

  37. B. Kumar, S. Mishra, M.B.V. Rao, and G.G. Roy: Ironmak. Steelmak., 2019, vol. 46, pp. 454–62.

    Article  CAS  Google Scholar 

  38. V. Gollapalli, M.B.V. Rao, P.S. Karamched, C.R. Borra, G.G. Roy, and P. Srirangam: Ironmak. Steelmak., 2019, vol. 46, pp. 663–70.

    Article  CAS  Google Scholar 

  39. P. Shen and J. Fu: Materials (Basel), 2019, vol. 12, p. 197.

    Article  CAS  Google Scholar 

  40. S.T. Kim, S.H. Jeon, I.S. Lee, and Y.S. Park: Corros. Sci., 2010, vol. 52, pp. 1897–1904.

    Article  CAS  Google Scholar 

  41. F. Wang, H. Guo, W. Liu, S. Yang, S. Zhang, and J. Li: Materials (Basel), 2019, vol. 12, p. 1034.

    Article  CAS  Google Scholar 

  42. C. Blais, G. L’Espérance, H. LeHuy, and C. Forget: Mater. Charact., 1997, vol. 38, pp. 25–37.

    Article  CAS  Google Scholar 

  43. Y. Tomita: J. Mater. Sci., 1994, vol. 29, pp. 2873–78.

    Article  Google Scholar 

  44. L. Shi, J. Chen, and D.O. Northwood: J. Mater. Eng., 1991, vol. 13, pp. 273–79.

    Article  CAS  Google Scholar 

  45. F. Schamber: Introduction to Automated Particle Analysis by Focused Electron Beam, ASPEX Corp., 2009, pp. 1–7.

  46. D. Kruger and A. Garbers-Craig: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 1514–32.

    Article  CAS  Google Scholar 

  47. Y. Wang, H. Tang, T. Wu, G. Wu, and J. Li: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 943–55.

    Google Scholar 

  48. R.V. Väinölä, L.E.K. Holappa, and P.H.J. Karvonen: J. Mater. Process. Tech., 1995, vol. 53, pp. 453–65.

    Article  Google Scholar 

  49. E.T. Turkdogan: Fundamentals of Steelmaking, The Institute of Materials, London, 1996.

    Google Scholar 

  50. R. Maiti and E.B. Hawbolt: J. Mater. Energy Syst., 1985, vol. 6, pp. 251–62.

    Article  CAS  Google Scholar 

  51. Y.M. Won and B.G. Thomas: Metall. Mater. Trans. A., 2001, vol. 32A, pp. 1755–67.

    Article  CAS  Google Scholar 

  52. R. Diederichs and W. Bleck: Steel Res. Int., 2006, vol. 77, pp. 202–09.

    Article  CAS  Google Scholar 

  53. S.K. Choudhary and A. Ghosh: ISIJ Int., 2009, vol. 49, pp. 1819–27.

    Article  CAS  Google Scholar 

  54. Y. Shen, S. Yang, J. Liu, H. Liu, R. Zhang, H. Xu, and Y. He: Steel Res. Int., 2019, vol. 90, p. 1800546.

    Article  CAS  Google Scholar 

  55. R. Guan, C. Ji, M. Zhu, and S. Deng: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 2571–83.

    Article  CAS  Google Scholar 

  56. I.M.M. Das, N. Kumar, and M. Paliwal: JOM, 2019, vol. 71, pp. 2780–90.

    Article  CAS  Google Scholar 

  57. J.J.R. Mondragón, M.H. Trejo, M.J.C. De Román, and H.T. Solís: ISIJ Int., 2008, vol. 48, pp. 454–60.

    Article  Google Scholar 

  58. H. Liu, D. Hu, and J. Fu: Materials (Basel), 2019, vol. 12, p. 2028.

    Article  CAS  Google Scholar 

  59. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Pearson Education Limited, Harlow, 1993.

    Google Scholar 

  60. Y. Tomita: Metall. Trans. A, 1990, vol. 21, pp. 2739–46.

    Article  Google Scholar 

  61. G. Li, F. Wang, R. Hui, and W. Cao: Int. J. Miner. Metall. Mater., 2009, vol. 16, pp. 650–53.

    CAS  Google Scholar 

  62. J. Moon, S.J. Kim, and C. Lee: Met. Mater. Int., 2013, vol. 19, pp. 45–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (Grant Number CRDPJ = 505545-16) for funding this research. The authors would also like to thank Dr. Stanley Sun and Dr. Li Sun from ArcelorMittal Dofasco for help with inclusion analysis.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyan Miao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 17, 2021; accpeted May 21, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, K., Nabeel, M. & Dogan, N. Evaluation of Calcium Treatment on Oxide and Sulfide Inclusions Through Modification Indexes. Metall Mater Trans B 53, 2897–2913 (2022). https://doi.org/10.1007/s11663-022-02573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02573-8

Navigation