Skip to main content
Log in

Phase Equilibrium of the V2O5–Na2O System

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Knowledge of the equilibrium phase relationship in the V2O5–Na2O system is critical and essential for the sodium salts roasting process of slag-bearing vanadium, and those fundamental studies can be used to accelerate industrial optimization and update the process. Therefore, phase equilibrium and quenching and thermal analysis experiments on the V2O5–Na2O binary system were carried out in the present work under pO2 of 10−3.5 atm. The V2O5–Na2O system has 7 primary phase fields including two simple oxides (V2O5 and Na2O), and 5 binary compounds (Na2V12O31, Na10V24O65, NaVO3, Na4V2O7, and Na3VO4). The existence of Na2V12O31 and Na10V24O65 was experimentally confirmed and then characterized by EPMA, no extensive compounds or solid solutions were detected in the present study. The liquidus lines were experimentally determined in most of the primary phase fields in the temperature range from 500 °C to 800 °C. The temperatures and components of some invariant reactions, including Liq → V2O5 + Na2V12O31 (640 °C, 53 mol pct Na2O), Liq → Na10V24O65 + NaVO3 (504 °C, 40.2 mol pct Na2O), Liq → NaVO3 + Na4V2O7 (540 °C, 59.0 mol pct Na2O), and a new peritectic reaction at 570 °C with 32 mol pct Na2O were rechecked, and Liq + Na2V12O31 → Na10V24O65 was also reconstructed. The large amount of new phase equilibrium data proposed in this work will serve as reliable input for future thermodynamic reassessments of the V2O5–Na2O system within the CALPHAD framework to extensively improve the current V2O5-based thermodynamic databases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Petranikova, A.H. Tkaczyk, A. Bartl, A. Amato, and C. Tunsu: Waste Manage., 2020, vol. 113, pp. 521–44.

    Article  CAS  Google Scholar 

  2. R. Gilligan and A.N. Nikoloski: Miner. Eng., 2019, https://doi.org/10.1016/j.mineng.2019.106106.

    Article  Google Scholar 

  3. J. Shi, M. Chen, X. Wan, P. Taskinen, and A. Jokilaakso: JOM, 2020, vol. 72, pp. 3204–12.

    Article  CAS  Google Scholar 

  4. G. Pei, J. Xiang, X. Lv, G. Li, Wu. Shanshan, D. Zhong, and W. Lv: J. Alloys Compd., 2019, vol. 794, pp. 465–72.

    Article  CAS  Google Scholar 

  5. W. Xie, X. Xing, and Z. Cao: J. Am. Ceram. Soc., 2020, vol. 103, pp. 5312–24.

    Article  CAS  Google Scholar 

  6. Y. Chen, M. Wang, Lu. Songle, Tu. Jiguo, and S. Jiao: Electrochim. Acta, 2020, vol. 331, pp. 1–9.

    Google Scholar 

  7. M. Chandra, T.S. Khan, R. Shukla, S. Ahamad, A. Gupta, S. Basu, M. Ali Haider, and R.S. Dhaka: Electrochimica Acta, 2020, vol. 331, pp. 1–10.

    Article  Google Scholar 

  8. B. Su, H. Liang, J. Liu, J. Wu, N. Sharma, Q. Gu, B. Johannessen, and D.Y.W. Yu: Chem. Commun., 2020, vol. 56, pp. 8245–48.

    Article  CAS  Google Scholar 

  9. I.-H. Jung and M.-A. Van Ende: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1851–74.

    Article  Google Scholar 

  10. G. Pei, J. Xiang, L. Yang, X. Jin, and X. Lv: Calphad, 2020, vol. 70, pp. 1–6.

    Article  Google Scholar 

  11. H. Sorum and H. Flood: Tidsskrift for Kjemi Bergvesen og Metallurgi, 1943, vol. 5, pp. 55–59.

    Google Scholar 

  12. R.P. Ozerov, V.V. Illarionov, and E.V. Kildildisheva: Zhurnal Neorganicheskoi Khimii, 1957, vol. 2, pp. 883–9.

    Google Scholar 

  13. M.P. Glazyrin and A.A. Fotiev: Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 1968, vol. 4, pp. 82–7.

    CAS  Google Scholar 

  14. G.A. Kolta and I.F. Hewaidy: Thermochim. Acta, 1972, vol. 25(7), pp. 327–30.

    CAS  Google Scholar 

  15. V. Danek, K. Matiasovsky, and J. Balajka: Chemicke Zvesti, 1973, vol. 27, pp. 748–51.

    CAS  Google Scholar 

  16. R.C. Kerby and J.R. Wilson: Can. J. Chem., 1973, vol. 51, pp. 1032–40.

    Article  CAS  Google Scholar 

  17. A.A. Fotiev, V.L. Volkov, and N.K. Valikhanova: Zh. Neorg. Khim., 1975, vol. 2, pp. 497–500.

    Google Scholar 

  18. M.P. Glazyrin and A.A. Fotiey: Izvestiya Akademii Nauk SSSR Neorg. Mater., 1968, vol. 4, pp. 82–87.

    CAS  Google Scholar 

  19. J.R. Wilson and R.C. Kerby: Can. J. Chem., 1973, vol. 51, pp. 1032–40.

    Article  Google Scholar 

  20. B.G. Golovkin, L.V. Kristallov, and M.V. Kruchinina: Zhurnal Neorganicheskoj Khimii, 1995, vol. 40, pp. 514–18.

    CAS  Google Scholar 

  21. J. Lee, S.Y. Kwon, and I.-H. Jung: J. Eur. Ceram. Soc., 2021, vol. 41, pp. 7946–56.

    Article  CAS  Google Scholar 

  22. V. Danek, I. Votava, K. Matiasovsky, and J. Balajka: Chemicke Zvesti, 1974, vol. 28, pp. 728–32.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (2018YFC1900500), National Natural Science Foundation of China (51904048), and the Graduate Scientific Research and Innovation Foundation of Chongqing, China (Grant No. CYB20002).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Pei, G., Zhong, D. et al. Phase Equilibrium of the V2O5–Na2O System. Metall Mater Trans B 53, 2695–2703 (2022). https://doi.org/10.1007/s11663-022-02560-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02560-z

Navigation