Skip to main content
Log in

Numerical Simulation of Flow Field Optimizing the Rotating Segregation Purification of Silicon for SoG-Si

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In order to improve the preparation efficiency of high-purity silicon, a new method of rotary segregation purification has been developed to prepare polysilicon. Numerical simulation based on ANSYS19.0 software and water model experiments were used to study the distribution of flow field and optimize the impurity removal process. A numerical simulation model suitable for rotating interface is established. The simulation result is in good agreement with the water model experiment. A vortex flow is found in the middle of the mold when the mold insertion depth is 90 mm. The vortex is conducive to the thinning of the impurity enrichment layer at the solid–liquid interface. With the mold insertion depth increases from 90 to 170 mm, two vortex flows appear in the middle and bottom of the mold, respectively. Moreover, setting the mold rotation rate at 100 rpm can contribute to a more stable flow field and a higher melt flow velocity. When the diffusion layer thickness is less than 0.1 mm, the impurity segregation coefficient can approach close to its equilibrium segregation coefficient, indicating that impurity segregation be effectively enhanced by increasing the rotation rate of mold, strengthening the effect of solidification rate and increasing the rotational speed. Industrial tests were carried out at the 100 kg level. The result shows that the rotary segregation method and equipment can achieve the removal of very low impurity in silicon (99.999 pct), and SoG-Si (99.9999 pct) was obtained. This method provides a new way for silicon purification, and it is believed that better results can be obtained through continuous improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Ebrahimfar and M. Ahmadian: SILICON, 2019, vol. 11, pp. 1979–87.

    Article  CAS  Google Scholar 

  2. C. Zhang, H. Lai, Y. Zhang, Z. Sheng, J. Li, P. Xing, and X. Luo: Sep. Purif. Technol., 2020, vol. 232, 115954.

    Article  CAS  Google Scholar 

  3. C. Lu, T. Tang, Z. Sheng, P. Xing, and X. Luo: Vacuum, 2017, vol. 143, pp. 7–13.

    Article  CAS  Google Scholar 

  4. H.J. Su, J. Zhang, L. Liu, and H.Z. Fu: Adv. Mater. Res., 2011, vol. 311–313, pp. 1389–92.

    Article  Google Scholar 

  5. M.A. Martorano, J.B. Ferreira Neto, T.S. Oliveira, and T.O. Tsubaki: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1870–86.

  6. S. Wen, D. Jiang, S. Shi, Y. Tan, P. Li, Z. Gu, and X. Zhang: Vacuum, 2016, vol. 125, pp. 75–80.

    Article  CAS  Google Scholar 

  7. Y. Li, Y. Tan, J. Li, and K. Morita: J. Alloy Compd., 2014, vol. 611, pp. 267–72.

    Article  CAS  Google Scholar 

  8. Y. Lei, W. Ma, L. Sun, J. Wu, Y. Dai, and K. Morita: Sci. Technol. Adv. Mat., 2016, vol. 17, pp. 12–19.

    Article  CAS  Google Scholar 

  9. G. Lv, Y. Bao, Y. Zhang, Y. He, and W. Ma: Mat. Sci. Semicon. Proc., 2018, vol. 81, pp. 139–48.

    Article  CAS  Google Scholar 

  10. X. Chen, Y. Zhong, T. Zheng, Z. Shen, J. Wang, L. Fan, Y. Zhai, M. Peng, B. Zhou, W. Ren, Z. Lei, Z. Ren, and Q. He: J. Alloys Compd., 2017, vol. 714, pp. 39–46.

    Article  CAS  Google Scholar 

  11. B. Zhou, W. Chen, Z. Li, R. Yue, G. Liu, and X. Huang: J. Cryst. Growth, 2018, vol. 483, pp. 164–68.

    Article  CAS  Google Scholar 

  12. S. Shi, P. Li, D. Jiang, Y. Tan, X. Li, J. Yang, L. Zhang, F. Wang, J. Li, and H.M.N. ul Huda Khan Asghar: Mater. Sci. Semicond. Process., 2019, vol. 96, pp. 53–58.

  13. S. Shi, Y. Tan, D. Jiang, S. Qin, X. Guo, and H.M.N. ul H.K. Asghar: Sep. Purif. Technol., 2015, vol. 152, pp. 32–36.

  14. N. Yuge, K. Hanazawa, and Y. Kato: Mater. Trans., 2004, vol. 45, pp. 850–57.

    Article  CAS  Google Scholar 

  15. T.P. Nguyen, Y.-T. Hsieh, J.-C. Chen, C. Hu, and H.B. Nguyen: J. Cryst. Growth, 2017, vol. 468, pp. 514–25.

    Article  CAS  Google Scholar 

  16. Y. Tsunooka, N. Kokubo, G. Hatasa, S. Harada, M. Tagawa, and T. Ujihara: CrystEngCom, 2018, vol. 20, pp. 6546–50.

    Article  CAS  Google Scholar 

  17. M. Jahoda, L. Tomášková, and M. Moštěk: Chem. Eng. Res. Des., 2009, vol. 87, pp. 460–67.

    Article  CAS  Google Scholar 

  18. W. He, W. Lu, S. Xu, M. Huang, and H. Li: Chem. Eng. Res. Des., 2019, vol. 147, pp. 278–91.

    Article  CAS  Google Scholar 

  19. S.S. Hoseini, G. Najafi, B. Ghobadian, and A.H. Akbarzadeh: Chem. Eng. J., 2021, vol. 413, 127497.

    Article  CAS  Google Scholar 

  20. C.-Y. Ge, J.-J. Wang, X.-P. Gu, and L.-F. Feng: Chem. Eng. Res. Des., 2014, vol. 92, pp. 1027–36.

    Article  CAS  Google Scholar 

  21. A. Heidari: Chin. J. Chem. Eng., 2020, vol. 28, pp. 2733–45.

    Article  CAS  Google Scholar 

  22. X. Duan, X. Feng, C. Peng, C. Yang, and Z. Mao: Chin. J. Chem. Eng., 2020, vol. 28, pp. 2235–47.

    Article  CAS  Google Scholar 

  23. M. Frey, L. Violet, D. Richard, and P. Fongarland: Chem. Eng. J., 2020, vol. 383, 122958.

    Article  CAS  Google Scholar 

  24. B. Delacroix, J. Rastoueix, L. Fradette, F. Bertrand, and B. Blais: Chem. Eng. Sci., 2021, vol. 230, 116137.

    Article  CAS  Google Scholar 

  25. B. Blais, M. Lassaigne, C. Goniva, L. Fradette, and F. Bertrand: Comput. Chem. Eng., 2016, vol. 85, pp. 136–46.

    Article  CAS  Google Scholar 

  26. A.K. Pukkella, R. Vysyaraju, V. Tammishetti, B. Rai, and S. Subramanian: Chem. Eng. J., 2019, vol. 358, pp. 621–33.

    Article  CAS  Google Scholar 

  27. Q.-Q. Xiong, Z. Chen, S.-W. Li, Y.-D. Wang, and J.-H. Xu: Chem. Eng. Sci., 2018, vol. 185, pp. 157–67.

    Article  CAS  Google Scholar 

  28. M. Avinash Kumar, M. Srinivasan, and P. Ramasamy: Mater. Res. Express, 2019, vol. 6, p. 105912.

  29. T. Kleiner, M. Gottanka, A. Stary, S. Rehfeldt, E. Bertakis, and H. Klein: Chem. Ing. Tech., 2020, vol. 92, pp. 1065–73.

    Article  CAS  Google Scholar 

  30. R. Bhar, A. Jardy, P. Chapelle, and V. Descotes: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2492–2503.

    Article  CAS  Google Scholar 

  31. W. Dai, G. Cheng, G. Zhang, Z. Huo, P. Lv, Y. Qiu, and W. Zhu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 611–27.

    Article  CAS  Google Scholar 

  32. K. Zhu, P. Yu, N. Yuan, and J. Ding: Int. J. Heat Mass Transf., 2018, vol. 127, pp. 413–25.

    Article  Google Scholar 

  33. S.K. Naeeni and L. Pakzad: Int. J. Multiph. Flow, 2019, vol. 120, 103100.

    Article  CAS  Google Scholar 

  34. Q. Fang, H. Zhang, J. Wang, C. Liu, and H. Ni: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1705–17.

    Article  CAS  Google Scholar 

  35. S. Eckert, P.A. Nikrityuk, D. Räbiger, K. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2007, vol. 38, pp. 977–88.

    Article  Google Scholar 

  36. B. Zhu, B. Zhang, and K. Chattopadhyay: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 898–905.

    Article  CAS  Google Scholar 

  37. Z. Sun, C. Hu, C. Liu, G. Lu, and J. Yu: Can. J. Chem. Eng., 2017, vol. 95, pp. 467–74.

    Article  CAS  Google Scholar 

  38. S.E. Mousavi, M.R. Choudhury, and Md.S. Rahaman: Chem. Eng. J., 2019, vol. 361, pp. 690–702.

    Article  CAS  Google Scholar 

  39. X. Guan, X. Li, N. Yang, and M. Liu: Chem. Eng. J., 2020, vol. 386, 121554.

    Article  CAS  Google Scholar 

  40. J. Chéron, C. Loubière, S. Delaunay, A.-G. Guezennec, and E. Olmos: Hydrometallurgy, 2020, vol. 197, 105490.

    Article  Google Scholar 

  41. A. Wodołażski: Int. J. Multiph. Flow, 2020, vol. 123, 103162.

    Article  Google Scholar 

  42. G. Wei, R. Zhu, B. Han, S. Yang, K. Dong, and X. Wu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1101–12.

    Article  CAS  Google Scholar 

  43. T. Kawasaki and K. Kim: Sci. Rep., 2019, vol. 9, p. 8118.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (2018YFC1901801), the National Natural Science Foundation of China (Nos. 51934006, U1902219). We thank William Leo, PhD, from Research Cloud, Australia Group, for editing the English text of a draft of this manuscript.

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Numerical Simulation of Flow Field During the Process of Rotating Segregation Purification of Silicon for SoG-Si.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoyu Qian or Zhilin Sheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, R., Qian, G., Wang, Z. et al. Numerical Simulation of Flow Field Optimizing the Rotating Segregation Purification of Silicon for SoG-Si. Metall Mater Trans B 53, 2657–2674 (2022). https://doi.org/10.1007/s11663-022-02558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02558-7

Navigation