Skip to main content
Log in

Measurement and Calculation of Magnetic Flux Density During Mold Electromagnetic Stirring on a Continuous Casting Bloom Mold

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the current study, a three-dimensional measurement of the magnetic flux density was performed for a 280 mm width × 250 mm thickness continuous casting bloom mold installed with electromagnetic stirring with varied current intensity and frequency. The magnetic flux density increased gradually to a peak value and then decreased along the downward vertical direction, and it decreased in the transverse direction from the copper plate to the center of the mold. The electromagnetic field in the mold and the stirrer was calculated, and the node loading method was used to model the current input. The effect of the mesh size on calculation accuracy was investigated, and it was found that the 0.02-m cell size for the mold and the 0.001-m cell size for the coil conductor and the iron core were enough to achieve good agreement between the calculation and measurement. It was revealed that the stainless metal shell of the stirrer and the molten steel flow had little influence on the magnetic flux density. The following empirical equation was obtained to calculate the local magnetic flux density along the vertical distance:

\(B = 0.0017 \times N \times I \times f^{ - 0.9} \exp \left( { - 0.022 + 0.064 \times \left( {\frac{{L - z_{{\text{o}}} }}{{L_{{\text{o}}} /2}}} \right) - 0.42 \times \left( {\frac{{L - z_{{\text{o}}} }}{{L_{{\text{o}}} /2}}} \right)^{2} } \right),\) where B is the local magnetic flux density in mT, I is the current intensity in A, f is the current frequency in s−1, N is the number of turns of coils, L is the vertical distance away from the center of the stirrer in m, Lo is the height of the stirrer and was 0.35 m in the current study, and zo is the distance of the stirrer center below the mold top and was 0.665 m in the current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A. Dang, B. Zhong, X. Tian, and Y. Yi: Spec. Steel (in Chinese), 2020, vol. 41, pp. 6–11.

    Google Scholar 

  2. Q. Fang, H. Ni, B. Wang, H. Zhang, and F. Ye: Metals, 2017, vol. 7, pp. 72(1–19).

  3. M. Davure, M. Barna, P. Gittler, K. Rockenschaub, and M. Lechner: Steel Res., 2008, vol. 79, pp. 617–26.

    Article  Google Scholar 

  4. Y. Liao and Y. Yao: Adv. Mater. Res., 2013, vol. 931, pp. 471–74.

    Article  Google Scholar 

  5. L. Zhang, C. Xu, C. Wang, T. Wang, X. Zhang, and H. Wu: Ironmak. Steelmak., 2021, vol. 48, pp. 1220–25.

    Article  CAS  Google Scholar 

  6. H. Wu, C. Xu, H. Jin, Y. Gao, X. Zhang, and Y. Jin: Appl. Phys. A, 2022, vol. 128, pp. 108–16.

    Article  CAS  Google Scholar 

  7. R. Wang, Y. Bao, Y. Li, and H. An: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 1150–56.

    Article  Google Scholar 

  8. J. Li, B. Wang, X. Wang, H. Pei, and S. Wang: Spec. Cast. Nonferrous Alloys (in Chinese), 2014, vol. 34, pp. 853–56.

    Google Scholar 

  9. W. Su, D. Jiang, S. Luo, and M. Zhu: J. Northeastern Univ. (Nat. Sci.) (in Chinese), 2013, vol. 34, pp. 673–78.

  10. C. Xiao, J. Zhang, Y. Luo, X. Wei, W. Lian, and S. Wang: J. Iron Steel Res. Int., 2013, vol. 20, pp. 13–20.

  11. Y. Wang, L. Zhang, W. Chen, and Y. Ren: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2796–2805.

    Article  Google Scholar 

  12. W. Li, M. Sha, R. Lin, J. Li, and T. Wang: Found. Technol. (in Chinese), 2014, vol. 35, pp. 2329–31.

    CAS  Google Scholar 

  13. X. Wang, S. Zheng, and M. Zhu: Ironmak. Steelmak., 2021, vol. 49, pp. 343–53.

    Article  Google Scholar 

  14. P. Wang, Z. Zhang, Z. Tie, M. Qi, P. Lan, S. Li, and Z. Yang: Metals, 2019, vol. 9, pp. 1083–97.

    Article  Google Scholar 

  15. R. Vertnik, K. Mramor, and B. Šarler: Eng. Anal. Bound. Elem., 2019, vol. 104, pp. 347–63.

    Article  Google Scholar 

  16. A. Maurya, R. Kumar, and P.K. Jha: J. Manuf. Process., 2020, vol. 60, pp. 596–607.

    Article  Google Scholar 

  17. Q. Fang, H. Zhang, J. Wang, C. Liu, and H. Ni: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1705–17.

    Article  Google Scholar 

  18. Y. Wang, W. Chen, D. Jiang, and L. Zhang: Steel Res. Int., 2020, vol. 91, p. 1900470(1–11).

  19. B. Yang, A. Deng, Y. Li, X. Xu, and E. Wang: J. Iron. Steel Res. Int., 2019, vol. 26, pp. 291–329.

    Google Scholar 

  20. X. Li and Z. Jiang: Adv. Mater. Res., 2015, vol. 3857, pp. 927–33.

    Article  Google Scholar 

  21. S. Li, H. Xiao, P. Wang, H. Liu, and J. Zhang: Metals, 2019, vol. 9, p. 946(1–15).

  22. S. Li, P. Lan, H. Tang, Z. Tie, and J. Zhang: Steel Res. Int., 2018, vol. 89, p. 1800071(1–11).

  23. L.B. Trindade, A.C.F. Vilela, F.F. Filho, M.T.M.B. Vilhena, and R.B. Soares: IEEE Trans. Magn., 2002, vol. 38, pp. 3658–60.

    Article  Google Scholar 

  24. X. Geng, X. Li, F.B. Liu, H.B. Li, and Z.H. Jiang: Ironmak. Steelmak., 2015, vol. 42, pp. 675–82.

    Article  CAS  Google Scholar 

  25. D. Jiang and L. Zhang: JOM, 2022, vol. 74, pp. 1601–09.

    Article  Google Scholar 

  26. Y. Chen, S. Luo, W. Wang, and M. Zhu, in The 20th National Steelmaking Conference, Chengdu, 2018, p. 1.

  27. H. Wang, M. Zhu, and H. Yu: J. Iron Steel Res Int., 2010, vol. 17, pp. 25–30.

    Article  Google Scholar 

  28. H. Liu, M. Xu, S. Qiu, and H. Zhang: Metall. Mater. Trans. B., 2012, vol. 13B, pp. 1657–75.

    Article  Google Scholar 

  29. L.B. Trindade, J.E.A. Nadalon, A.C. Contini, and R.C. Barroso: Steel Res. Int., 2017, vol. 88, pp. 1600319(1–8).

  30. T. Sun, F. Yue, H. Wu, C. Guo, Y. Li, and Z. Ma: J. Iron. Steel Res. Int., 2016, vol. 23, pp. 329–37.

    Article  Google Scholar 

  31. H. Wu, N. Wei, Y. Bao, G. Wang, C. Xiao, and J. Liu: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 159–64.

    Article  CAS  Google Scholar 

  32. G. Liu, H. Lu, B. Li, C. Ji, J. Zhang, Q. Liu, and Z. Lei: Materials (Basel, Switzerland), 2021, vol. 14, pp. 3681(1–17).

  33. H. An, Y. Bao, M. Wang, and Q. Yang: Ironmak. Steelmak., 2018, vol. 46, pp. 845–54.

    Article  Google Scholar 

  34. L. Zhang, C. Xu, J. Zhang, T. Wang, J. Li, and S. Li: Metals, 2020, vol. 10, pp. 516(1–11).

  35. Q. Fang, H. Zhang, J. Wang, C. Liu, and H. Ni: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1705–17.

    Article  Google Scholar 

  36. S. Wang, L. Zhang, Q. Wang, W. Yang, Y. Wang, L. Ren, and L. Cheng: Metall. Res. Technol., 2016, vol. 113, p. 205(1–16).

  37. M. Barna, M. Javurek, B. Willers, S. Eckert, and J. Reiter: IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 143, p. 012027(1–8).

  38. B. Ren, D. Chen, W. Xia, H. Wang, and Z. Han: Metals, 2018, vol. 8, p. 903(1–10).

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Grant Nos. U1860206, 51725402 and 52104343), the Fundamental Research Funds for the Central Universities (Grant No. FRF-BD-20-04A), S&T Program of Hebei (Grant No. 20311005D), the High Steel Center (HSC) at North China University of Technology (NCUT), University of Science and Technology Beijing (USTB), and Yanshan University (YSU), China.

Conflict of interest

On behalf of all authors, the corresponding authors states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen, Jing Zhang or Lifeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhao, Z., Chen, W. et al. Measurement and Calculation of Magnetic Flux Density During Mold Electromagnetic Stirring on a Continuous Casting Bloom Mold. Metall Mater Trans B 53, 2481–2498 (2022). https://doi.org/10.1007/s11663-022-02544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02544-z

Navigation