Skip to main content

Advertisement

Log in

Ladle Nozzle Clogging in Vacuum Induction Melting Gas Atomization: Influence of the Melt Viscosity

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

During the production of fine metal powder using vacuum induction melting gas atomization (VIGA) technology, the problem of nozzle clogging is often encountered. The viscosity of melt is one of the key factors causing the clogging of nozzle. To visualize the mechanism of the clogging of nozzle, the volume of fluid (VOF) model combined with large eddy turbulence model was used to simulate the nozzle-clogging process of an alloy melt in the primary atomization zone. The results show that, with the increase of viscosity, the flow rate of the melt in the delivery-tube decreased, the heat dissipation of the melt increased, and the crushing resistance increased. In addition, the melt flow that was not broken in time hanged at the tip of the delivery-tube, and resulted in nozzle-clogging. The simulation results were also verified by the gas atomization experiments. When the viscosity of the melt was 5.24–5.45 mPa s, the atomization process was continuous, the particle size distribution was uniform, and the yield of fine powder was high. However, when the viscosity continued to decrease, a larger mass flow rate had the opposite effect, and the powder particles became coarser. This research is of guiding significance for understanding the continuity of atomization process of VIGA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.P. Mates and G.S. Settles: Atomi. Spray, 2005, vol. 15, pp. 798–807.

    Google Scholar 

  2. R. Kaiser, C.G. Li, S.S. Yang, and D.G. Lee: Adv. Powder Technol., 2018, vol. 29, pp. 623–30.

    Article  Google Scholar 

  3. M.W. Wei, S.Y. Chen, M. Sun, J. Liang, C.S. Liu, and M. Wang: Powder Technol., 2020, vol. 367, pp. 724–39.

    Article  CAS  Google Scholar 

  4. S. Motaman, A.M. Mullis, R.F. Cochrane, and D.J. Borman: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1990–2004.

    Article  CAS  Google Scholar 

  5. K.C. Mills: Aircr. Eng. Aerosp. Tec., 2002, vol. 5, pp. 181–90.

    Google Scholar 

  6. D. Singh and S. Dangwal: J. Mater. Sci., 2006, vol. 41, pp. 3853–60.

    Article  CAS  Google Scholar 

  7. S. Feng, M. Xia, and C.C. Ge: Int. J. Mater. Form., 2019, vol. 12, pp. 615–22.

    Article  Google Scholar 

  8. M. Xia, P. Wang, X.H. Zhang, and C.C. Ge: Acta. Phys., 2018, vol. 67, pp. 564–71.

    Google Scholar 

  9. I.E. Anderson and R.L. Terpstra: Mat. Sci. Eng. A-Struct, 2002, vol. 326, pp. 101–09.

    Article  Google Scholar 

  10. R. Metz, C. Machado, M. Houabes, J. Pansiot, M. Elkhatib, R. Puyane, and M. Hassanzadeh: J. Mater. Process. Tech., 2007, vol. 195, pp. 248–54.

    Article  Google Scholar 

  11. X.Q. Song, Y.X. Li, and M. Han: Powder Metall., 2018, vol. 28(1), pp. 698–704.

    Google Scholar 

  12. X.M. Zhao, J. Xu, X.X. Zhu, and S.M. Zhang: Sci. China Ser. E Technol. Sci., 2009, vol. 52, pp. 3046–53.

    Article  Google Scholar 

  13. A.M. Mullis, N.E. Adkins, Z. Aslam, I.N. McCarthy, and R.F. Cochrane: Int. J. Powder Metall., 2008, vol. 44, pp. 55–64.

    CAS  Google Scholar 

  14. J. Ting, M.W. Peretti, and W.B. Eisen: Mater. Sci. Eng. A, 2002, vol. 326, pp. 110–21.

    Article  Google Scholar 

  15. J.T. Strauss: Met. Powder Rep., 1999, vol. 54, pp. 24–28.

    Google Scholar 

  16. J. Mi, R.S. Figliola, and I.E. Anderson: Metall. Mater. Trans. B, 1997, vol. 28, pp. 935–41.

    Article  Google Scholar 

  17. D. Schwenck, N. Ellendt, J. Fischer-Bühner, P. Hofmann, and V. Uhlenwinkel: Powder Metall., 2017, vol. 60, pp. 198–207.

    Article  CAS  Google Scholar 

  18. D. Beckers, N. Ellendt, U. Fritsching, and V. Uhlenwinkel: Adv. Powder Technol., 2019, vol. 3, p. 504.

    Google Scholar 

  19. R.F. Brooks, A.T. Dinsdale, and P.N. Quested: Meas. Sci. Technol., 2005, vol. 16, pp. 354–62.

    Article  CAS  Google Scholar 

  20. K. Minagawa, Y. Liu, and H. Kakisawa: JSME Int. J., 2004, vol. 46, pp. 26–31.

    Google Scholar 

  21. N. Hansen and X. Huang: Mater. Sci. Forum, 2005, vol. 475, pp. 7–42.

    Google Scholar 

  22. N. Zeoli and S. Gu: Comput. Mater. Sci., 2006, vol. 38, pp. 282–92.

    Article  CAS  Google Scholar 

  23. K.H. Arachchilage, M. Haghshenas, S. Park, L. Zhou, Y. Sohn, B.D. McWilliams, K. Cho, and R. Kumar: Adv. Powder Technol., 2019, vol. 30, pp. 2726–32.

    Article  Google Scholar 

  24. A. Asgariana, M. Heinrichc, R. Schwarzec, M. Bussmannb, and K. Chattopadhyay: Int. J. Multiphas. Flow, 2020, vol. 130, 103347.

    Article  Google Scholar 

  25. B.E. Launder and D.B. Spalding: Comput. Method. Appl. M., 1974, vol. 3, pp. 269–89.

    Article  Google Scholar 

  26. F.R. Menter: AIAA J., 1994, vol. 32, pp. 1598–1605.

    Article  Google Scholar 

  27. A. Yoshizawa and K.A. Horiuti: J. Phys. Soc. Jpn., 1985, vol. 54, pp. 2834–39.

    Article  Google Scholar 

  28. M. Vaezi, H. Seitz, and S.F. Yang: Int. J. Adv. Manuf. Tech., 2013, vol. 67, pp. 1721–54.

    Article  Google Scholar 

  29. N. Ciftci, N. Ellendt, E. Soares Barreto, L. Mädler, and V. Uhlenwinkel: Adv. Powder Technol., 2018, vol. 29, pp. 380–85.

    Article  CAS  Google Scholar 

  30. H. Lubanska: JOM, 1970, vol. 22, pp. 45–49.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and company that could be construed as influencing the position presented in, or the review of the manuscript entitled. On behalf of all authors, I declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xia, M., Wu, J. et al. Ladle Nozzle Clogging in Vacuum Induction Melting Gas Atomization: Influence of the Melt Viscosity. Metall Mater Trans B 53, 2386–2397 (2022). https://doi.org/10.1007/s11663-022-02537-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02537-y

Navigation