Skip to main content
Log in

An Innovative Method to Calculate the Boundary Layer Thickness of the Gas–Slag Interface

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An innovative method to calculate the thickness of gas–slag boundary layer is proposed in CaO–SiO2–10 wt pct MnO at 1873 K. The samples were kept under Ar–CO–CO2–SO2 atmosphere for different time. The thickness can be derived from etching time, etching rate, and the structure information correspondingly. The calculation results show that the boundary layer thickness of 1, 3, and 6 hours is 117.90, 102.18, and 94.32 nm, respectively, which is attributed to the Mn–S interaction and accumulations in the interface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. L. Muhmood, N.N. Viswanathan, and S. Seetharaman: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 460–70.

    Article  Google Scholar 

  2. E. Kapilashrami, S. Seetharaman, A. Lahiri, and A. Cramb: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 647–52.

    Article  CAS  Google Scholar 

  3. M. Divakar, J. Hajra, A. Jakobsson, and S. Seetharaman: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 267–76.

    Article  CAS  Google Scholar 

  4. P. Kozakevitch: Physical Chemistry of Steelmaking, MIT Press, Cambridge, 1957.

    Google Scholar 

  5. A. Sharan and A. Cramb: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 87–94.

    Article  CAS  Google Scholar 

  6. R.F. Brooks, I. Egry, S. Seetharaman, and D. Grant: High Temp. High Pressures, 2001, vol. 33, pp. 631–67.

    Article  CAS  Google Scholar 

  7. A. Jakobsson, D. Sichen, S. Seetharaman, and N. Viswanathan: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 973–80.

    Article  CAS  Google Scholar 

  8. M.A. Rhamdhani, K.S. Coley, and G. Brooks: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 591–604.

    Article  CAS  Google Scholar 

  9. X.B. He, L.J. Wang, and K.C. Chou: Ceram. Int., 2021, vol. 47, pp. 12476–82.

    Article  CAS  Google Scholar 

  10. X. He, L. Wang, and K. Chou: J. Alloys Compd., 2021, vol. 876, p. 160209.

    Article  CAS  Google Scholar 

  11. Y. Chung and A.W. Cramb: Metall. Mater. Trans. B., 2000, vol. 31B, pp. 957–71.

    Article  CAS  Google Scholar 

  12. S. Hara, K. Akao, and K. Ogino: Tetsu-to-Hagane., 1989, vol. 75, pp. 1891–96.

    Article  CAS  Google Scholar 

  13. M. Matsushima, S. Yadoomaru, K. Mori, and Y. Kawai: Trans. Iron Steel Inst. Jpn., 1977, vol. 17, pp. 442–49.

    Article  CAS  Google Scholar 

  14. M. Eisenberg, C. Tobias, and C. Wilke: J. Electrochem. Soc., 1954, vol. 101, p. 306.

    Article  CAS  Google Scholar 

  15. M. Kosaka and S. Minowa: Tetsu-to-Hagane., 1967, vol. 53, pp. 983–97.

    Article  CAS  Google Scholar 

  16. I. Sohn, W. Wang, H. Matsuura, F. Tsukihashi, and D.J. Min: ISIJ Int., 2012, vol. 52, pp. 158–60.

    Article  CAS  Google Scholar 

  17. H. Kim and I. Sohn: ISIJ Int., 2011, vol. 51, pp. 1–8.

    Article  CAS  Google Scholar 

  18. L. Wang, Y. Wang, K. Chou, and S. Seetharaman: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 2558–63.

    Article  Google Scholar 

  19. L.-J. Wang, J.-P. Yu, K.-C. Chou, and S. Seetharaman: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1802–08.

    Article  Google Scholar 

  20. C. Fincham and F.D. Richardson: Proc. R. Soc. Lond. Series A, 1954, vol. 223, pp. 40–62.

    Article  CAS  Google Scholar 

  21. G. Park, Y. Kang, and J.H. Park: ISIJ Int., 2011, vol. 51, pp. 1375–82.

    Article  Google Scholar 

  22. V. Di Castro and G. Polzonetti: J. Electron. Spectrosc. Relat. Phenom., 1989, vol. 48, pp. 117–23.

    Article  Google Scholar 

  23. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, and R.S. Smart: Appl. Surf. Sci., 2011, vol. 257, pp. 2717–30.

    Article  CAS  Google Scholar 

  24. E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, and S.N. Kerisit: Appl. Surf. Sci., 2016, vol. 366, pp. 475–85.

    Article  CAS  Google Scholar 

  25. Q. Xiang, S. Li, X.F. Zou, Y.J. Qiang, B.B. Hu, Y. Cen, C.L. Xu, L.J. Liu, Y. Zhou, and C.G. Chen: Appl. Surf. Sci., 2018, vol. 462, pp. 65–72.

    Article  CAS  Google Scholar 

  26. M.D. Walle, K. Zeng, M. Zhang, Y. Li, and Y. Liu: Appl. Surf. Sci., 2019, vol. 473, pp. 540–47.

    Article  CAS  Google Scholar 

  27. Y. Chang, F. Hong, C. He, Q. Zhang, and J. Liu: Adv. Mater., 2013, vol. 25, pp. 4794–99.

    Article  CAS  Google Scholar 

  28. J.H. Park and P.C.H. J. Non-Cryst. Solids., 2001, vol. 282, pp. 7–14.

    Article  CAS  Google Scholar 

  29. L. Wang, J. Yu, K. Chou, and S. Seetharaman: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1802–08.

    Article  Google Scholar 

  30. H. Shanker and R. Ray: Kinetics of Metallurgical Processes, Springer, New York, 2019.

    Google Scholar 

  31. J.F. Watts and J. Wolstenholme: An Introduction to Surface Analysis by XPS and AES, Wiley, Hoboken, 2019.

    Book  Google Scholar 

  32. M. Noriaki, Y. Yasunori, I. Yukikazu, and Noriaki: Energy dependence of the ion-induced sputtering yields of monatomic solids, Atomic Data & Nuclear Data Tables, 1984.

  33. J.H. Park: ISIJ Int., 2012, vol. 52, pp. 1627–36.

    Article  CAS  Google Scholar 

  34. F. Wang, J. Wu, W. Ma, Y. Lei, K. Wei, and B. Yang: J. Chem. Thermodyn., 2018, vol. 118, pp. 215–24.

    Article  CAS  Google Scholar 

  35. J. Wu, F. Wang, Z. Chen, W. Ma, Y. Li, B. Yang, and Y. Dai: Fluid Phase Equilib., 2015, vol. 404, pp. 70–74.

    Article  CAS  Google Scholar 

  36. Y. Wang and K. Morita: J. Sustain. Metall., 2015, vol. 1, pp. 126–33.

    Article  Google Scholar 

  37. X. He, S. Ma, L. Wang, H. Dong, and K. Chou: J. Alloys Compd., 2022, vol. 896, p. 163008.

    Article  CAS  Google Scholar 

Download references

The authors are grateful for the financial support of this work from the National Natural Science Foundation of China (Grant No. 51922003) and the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-19-004C1). At the same time, we would like to sincerely thank Professor Kuo-Chih Chou for his guidance on the analysis process.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Wang, L. An Innovative Method to Calculate the Boundary Layer Thickness of the Gas–Slag Interface. Metall Mater Trans B 53, 1973–1979 (2022). https://doi.org/10.1007/s11663-022-02526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02526-1

Navigation