Skip to main content
Log in

A New Approach for the Comprehensive Utilization of Vanadium Slag

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Although vanadium slag contains various valuable metals, including vanadium, titanium, chromium, iron, etc., it is only used to extract the vanadium due to technical limitations. In order to realize the comprehensive utilization of vanadium slag, a new approach was proposed in this work. First, the hydrogen reduction of vanadium slag was investigated. The phase and micromorphology evolution of the vanadium slag under different reduction conditions were discussed in detail. The results showed that the pyroxene and olivine surrounding the spinel in vanadium slag were reduced selectively into metallic iron and silica under appropriate reduction conditions, and the structures were destroyed. Then, the method of recovering metallic iron from the reduced vanadium slag with ferric chloride solution was investigated. The results showed that more than 98 pct of metallic iron in the reduced vanadium slag can be leached selectively by ferric chloride solution, and the vanadium, titanium, and chromium were left in the deironized intermediate. Finally, the extraction of vanadium, titanium, and chromium from the deironized intermediate by the oxalic acid hydrothermal leaching method was studied, and the leaching recoveries were 96.8, 94.7, and 95.4 pct, respectively. This approach provides insights into the comprehensive utilization of vanadium slag, which is especially favorable for low-grade vanadium slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Liu, X. He, Y. Wang, and L. Wang: J. Clean Prod., 2020, vol. 284, p. 124674.

    Article  Google Scholar 

  2. H.X. Fang, H.Y. Li, and B. Xie: ISIJ Int., 2012, vol. 52, pp. 1958–65.

    Article  CAS  Google Scholar 

  3. E. Hukkanen and H. Walden: Int. J. Miner. Process., 1985, vol. 15, pp. 89–102.

    Article  CAS  Google Scholar 

  4. S. Liu, L. Wang, and K. Chou: Ind. Eng. Chem., 2016, vol. 55, pp. 12962–69.

    Article  CAS  Google Scholar 

  5. Z.H. Dong, J. Zhang, and B.J. Yan: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 3961–69.

    Article  Google Scholar 

  6. H.Y. Li, H.X. Fang, K. Wang, W. Zhou, Z. Yang, and X.M. Yan: Hydrometallurgy., 2015, vol. 156, pp. 124–35.

    Article  CAS  Google Scholar 

  7. M. Li, L. Xiao, J.J. Liu, Z.X. Shi, Z.B. Fu, and Y. Peng: Mater. Sci. Forum., 2016, vol. 863, pp. 144–48.

    Article  Google Scholar 

  8. J. Wen, T. Jiang, Y. Liu, and X.X. Xue: Miner. Process Extr. Metall. Rev., 2018, vol. 2018, pp. 1–11.

    Google Scholar 

  9. J. Wen, T. Jiang, M. Zhou, H.Y. Gao, and X.X. Xue: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 515–26.

    Article  CAS  Google Scholar 

  10. M. Li, B. Liu, S. Zheng, S. Wang, H. Du, D.B. Dreisinger, and Y. Zhang: J. Clean Prod., 2017, vol. 149, pp. 206–17.

    Article  CAS  Google Scholar 

  11. J. Wen, T. Jiang, J.P. Wang, L.G. Lu, and H.Y. Sun: J. Clean Prod., 2020, vol. 261, pp. 1–11.

    Article  Google Scholar 

  12. H.Y. Li, C.J. Wang, Y.H. Yuan, Y. Guo, and B. Xi: J. Clean Prod., 2020, vol. 260, p. 121091.

    Article  CAS  Google Scholar 

  13. W.Z. Mu, T.A. Zhang, Z.H. Dou, G.Z. Lü, L. Hu, and B. Yu: AMM., 2011, vol. 79, pp. 242–47.

    Article  CAS  Google Scholar 

  14. Z.H. Wang, S.L. Zheng, S.N. Wang, B. Liu, D.W. Wang, and H. Du: Trans. Nonferrous Met. Soc. China., 2014, vol. 24, pp. 1273–88.

    Article  CAS  Google Scholar 

  15. B. Fu: Handbook of metallurgical analysis of nonferrous metals, 2nd ed. Metallurgical Industry Press, Beijing, 2008, pp. 231–32.

    Google Scholar 

  16. M. Ishii, M. Nakahira, and T. Yamanaka: Solid State Commun., 1972, vol. 11, pp. 209–12.

    Article  CAS  Google Scholar 

  17. R. Jeanloz: Phys. Chem. Miner., 1980, vol. 5, pp. 327–41.

    Article  CAS  Google Scholar 

  18. D. Kim, D. Lim, H. Ryu, J. Lee, S.I. Ahn, B.S. Son, S.J. Kim, C.H. Kim, and J.C. Park: Inorg. Chem., 2017, vol. 56, pp. 12116–28.

    Article  CAS  Google Scholar 

  19. Y. Wang, J. Song, Q. Guo, X. Xi, G. Hou, G. Wei, and J. Qu: J. Clean Prod., 2018, vol. 172, pp. 2576–84.

    Article  CAS  Google Scholar 

  20. H.L. Choi and P. Chan: J MATER SCI., 1999, vol. 34, pp. 3591–96.

    Article  CAS  Google Scholar 

  21. H.L. Liu, J.H. Hu, H. Wang, and C. Wang: Chin. J. Process. Eng., 2012, vol. 12, pp. 265–70.

    CAS  Google Scholar 

  22. S. Kang, T. Reijiro, and Y. Jun-Ichiro: ISIJ Int., 2007, vol. 32, pp. 496–504.

    Google Scholar 

  23. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L. Lau, A.R. Gerson, and R. Smart: Appl. Surf. Sci., 2011, vol. 257, pp. 2717–30.

    Article  CAS  Google Scholar 

  24. I. Uhlig, R. Szargan, H.W. Nesbitt, and K. Laajalehto: Appl. Surf. Sci., 2001, vol. 179, pp. 222–29.

    Article  CAS  Google Scholar 

  25. G. Silversmit, D. Depla, H. Poelman, G.B. Marin, and R.D. Gryse: J. Electron Spectrosc. Relat. Phenom., 2004, vol. 135, pp. 167–75.

    Article  CAS  Google Scholar 

  26. R.P. Netterfield, P.J. Martin, C.G. Pacey, W.G. Sainty, and G. Auchterlonie: J. Appl. Phys., 1989, vol. 66, pp. 1805–09.

    Article  CAS  Google Scholar 

  27. J.L. Fierro, L.A. Arrua, and J.M. Nieto: Appl. Catal., 1988, vol. 37, pp. 323–38.

    Article  CAS  Google Scholar 

  28. D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, and R. Dormoy: Surf. Sci., 1991, vol. 254, pp. 81–89.

    Article  CAS  Google Scholar 

  29. A. Maetaki and K. Kishi: Surf. Sci., 1998, vol. 411, pp. 35–45.

    Article  CAS  Google Scholar 

  30. K.J. Freund: Surf. Sci., 1991, vol. 258, pp. 23–34.

    Article  Google Scholar 

  31. J. Marcus: Surf. Sci., 1991, vol. 249, pp. 171–79.

    Article  Google Scholar 

  32. J. Fujita, A.E. Martell, and K. Nakamoto: J. Chem. Phys., 1962, vol. 36, pp. 324–31.

    Article  CAS  Google Scholar 

  33. D. Fatouros: J. Electroanal. Chem., 2005, vol. 579, pp. 239–42.

    Article  Google Scholar 

  34. N. Nagai and H. Hashimoto: Appl. Surf. Sci., 2001, vol. 172, pp. 307–11.

    Article  CAS  Google Scholar 

  35. S. Song, H.B. Cho, and H.T. Kim: J. Ind. Eng. Chem., 2018, vol. 61, pp. 281–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China through Project Number 52174274, and the Fundamental Research Funds for the Central Universities through project number FRF-MP-19-015 and FRF-MP-20-21 are gratefully acknowledged.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baijun Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Zhang, J. & Yan, B. A New Approach for the Comprehensive Utilization of Vanadium Slag. Metall Mater Trans B 53, 2198–2208 (2022). https://doi.org/10.1007/s11663-022-02518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02518-1

Navigation