Skip to main content
Log in

Effect of the La2O3 Content in Slag on Inclusions in Al-Killed Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In order to explore the reaction between the molten steel and the slag containing rare earth oxides, the effect of the La2O3 in slag on inclusions in the molten steel was carried out through laboratory experiments and thermodynamic calculations. In the case of steel–slag ratio of 5:1, the chemical reaction between La2O3 in slag and the molten steel occurred so that the element La was transferred to the molten steel and reacted with the existing inclusions in the steel generating a large amount of inclusions containing La2O3. As the La2O3 content in the slag increased to 5 pct, the total La content in the steel and the La2O3 content in inclusions gradually increased to 1.9 ppm and 4.63 pct, respectively. Both of them changed slightly when the La2O3 in slag further increased to 10 pct. The number density of >5 μm inclusions decreased from 4.76 to 0.44 #/mm2 when the La2O3 content in the slag increased from 0 to 10 pct. Moreover, it was found that the La2O3 in the slag was beneficial to remove Al2O3-MgO inclusions from the molten steel. An activity model of slag was established based on the ion and molecule coexistence theory, and it was proved that the activity of Al2O3 in the slag increased with the increase of La2O3 in the slag. In addition, the dissolved aluminum in the molten steel would promote the reduction of La2O3 in the slag, which was verified by both the experimental data and the thermodynamic calculation. The formation mechanism of inclusions during the steel–slag equilibrium reaction was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Zhang: Non-metallic Inclusions in Steels: Fundamentals, Metallurgical Industry Press, Beijing, 2019. (in Chinese).

    Google Scholar 

  2. L. Zhang: Non-metallic Inclusions in Steels: Industrial Practice, Metallurgical Industry Press, Beijing, 2020. (in Chinese).

    Google Scholar 

  3. J. Wang, L. Zhang, W. Chen, S. Wang, Y. Zhang, and Y. Ren: Chin. J. Eng., 2021, vol. 43, pp. 786–96.

    CAS  Google Scholar 

  4. X. Yang, L. Hu, G. Cheng, C. Wu, and B. Wu: J. Rare Earths., 2011, vol. 29, pp. 1079–84.

    Article  CAS  Google Scholar 

  5. P. Rocabois, J.-N. Pontoire, V. Delville, and I. Marolleau: ISSTech2003 Conference Proceedings, 2003, pp. 995–1006.

  6. M. Burty, P. Dunand, J.P. Ritt, H. Soulard, A. Blanchard, F. Penet, G. Jeanne, R. Pluquet, and I. Poissonnet: Ironmak. Conf. Proc., 1997, vol. 56, pp. 711–17.

    CAS  Google Scholar 

  7. M. Byrne, T.W. Fenicle, and A.W. Cramb: Steelmaking Conference Proceedings., 1985, vol. 68, pp. 451–61.

    Google Scholar 

  8. T. Komai: Tetsu-to-Hagane., 1981, vol. 67, pp. 1152–61.

    Article  CAS  Google Scholar 

  9. H. Zeder and L. Pocze: Berg Huttenmann. Monatsh., 1980, vol. 125, pp. 1–5.

    CAS  Google Scholar 

  10. G. Benko, S. Simon, and G. Szarka: Neue Hutte., 1972, vol. 17, pp. 40–44.

    CAS  Google Scholar 

  11. J.M. Middleton and B. Cauwood: Brit Foundryman, 1967, vol. 60, pp. 320–30.

    CAS  Google Scholar 

  12. X. Zhang and K. Cai: Project Report: Investigation of Inclusion Behavior of 16MnR Steel at WISCO, Wuhan, 1996.

  13. Y. Hong, X. Ye, Z. Guo, W. Zhang, and G. Li: Iron Steel., 1980, vol. 15, pp. 29–36.

    CAS  Google Scholar 

  14. C. Wang and Y. Zhang: J. Chin. Soc. Rare Earths., 2012, vol. 30, pp. 530–37.

    Google Scholar 

  15. C. Wang and Y. Zou: Acta Metall. Sin., 1980, vol. 16, pp. 190–94.

    CAS  Google Scholar 

  16. L. Yu: Study on the Yield of Active Element and Precipitates During Electroslag Remelting Process, University of Science and Technology Beijing, 2012.

  17. Q. Ren and L. Zhang: Metall. Trans. B., 2020, vol. 51, pp. 589–600.

    Article  CAS  Google Scholar 

  18. C. Liu, Z. Jiang, J. Zhao, X. Cheng, Z. Liua, D. Zhang, and X. Li: Corros. Sci., 2020, vol. 166, p. 463.

    Google Scholar 

  19. C. Yang, Y. Luan, D. Li, and Y. Li: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1298–1308.

    Article  CAS  Google Scholar 

  20. L. Wang, Y. Liu, Q. Wang, and K. Chou: ISIJ Int., 2015, vol. 55, pp. 970–75.

    Article  CAS  Google Scholar 

  21. S. Ueda, K. Morita, and N. Sano: ISIJ Int., 1998, vol. 38, pp. 1292–96.

    Article  CAS  Google Scholar 

  22. R. Kitano, M. Ishii, M. Uo, and K. Morita: ISIJ Int., 2016, pp. 723-30.

  23. Z. Zhao, X. Chen, B. Glaser, and B. Yan: Metall. Trans. B., 2019, vol. 50, pp. 395–407.

    Article  CAS  Google Scholar 

  24. D. Wang, M. Jiang, C. Liu, P. Shi, Y. Yao, and H. Wang: J. Rare Earths, 2005, vol. 23, pp. 68–73.

    CAS  Google Scholar 

  25. S.J. Jeong, T.S. Kim, and J.H. Park: Met. Mater. Int., 2020, vol. 26, pp. 1872–80.

    Article  Google Scholar 

  26. S.J. Jeong, T.S. Kim, and J.H. Park: Metall. Trans. B, 2017, vol. 48, pp. 545–54.

    Article  CAS  Google Scholar 

  27. F. Schamber (Ed.): Introduction to Automated Particle Analysis by Focused Electron Beam, Corporation, 2009.

  28. V. Singh, S.N. Lekakh, and K.D. Peaslee: SFSA Technical and Operating Conference, Steel Founders’ Society of America, 2008.

  29. Y. Luo, L. Zhang, W. Yang, Y. Ren, and A.N. Conejo: Ironmak. Steelmak., 2019, vol. 46, pp. 359–67.

    Article  CAS  Google Scholar 

  30. V. D. Eisenhuttenleute: Germany: Verlag Stahleisen Gmbh, 1995.

  31. J. Chen: Metallurgical Industry Press, 2010.

  32. C. Wang, S. Ye, D. Yu, and W. Guo: Acta Metall. Sin., 1984, vol. 20, pp. 357–64.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Grant No. 52004025, No. U1860206, No. 51725402), and S&T Program of Hebei (Grant No. 20311005D), the High Steel Center (HSC) at Yanshan University, Hebei Innovation Center of the Development and Application of High Quality Steel Materials, Hebei International Research Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Yang or Lifeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Wu, M., Yang, W. et al. Effect of the La2O3 Content in Slag on Inclusions in Al-Killed Steels. Metall Mater Trans B 53, 2088–2103 (2022). https://doi.org/10.1007/s11663-022-02510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02510-9

Navigation