Skip to main content
Log in

Effect of Cast Roll Sleeve Material on Temperature Field of Sandwich Composite Plate Solid-Liquid-Solid Twin-Roll Casting Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The solid-liquid-solid twin-roll casting (SLS-TRC) is a process of continuously pouring melt between two solid clad trips in the cast roll gap to produce a sandwich composite plate. In the process, the cast roll sleeve material considerably influences the temperature field. The numerical simulation of SLS-TRC is performed to analyze the effects of cast roll sleeve material on molten pool temperature field, roll surface temperature, and clad strip temperature at different casting speeds. The sandwich composite plate was manufactured on the vertical twin-roll casting mill on the basis of the simulation results, and the composite plate was analyzed using a scanning electron microscope (SEM). Finally, the thermal resistance model of the heat transfer from the molten pool to the cast roll in SLS-TRC was proposed. When the cast roll sleeve material changed from steel to copper, the KISS point, which is the dividing point between the casting stage and the rolling stage, increases by 5 to 10 mm, and the outlet temperature decreases by 134 °C. If the KISS point maintains the same height, the casting speed can increase by 0.3 to 0.6 m/min. The increase of casting speed results in the increase of copper roll surface temperature that is considerably less than that of steel roll surface temperature. This scenario helps improve the thermal fatigue service conditions of the cast roll. SEM analysis indicates that when the cast roll sleeve material is copper, the core grain size increases with the increase of casting speed. However, it decreases when the sleeve is steel. The thermal resistance model shows that when the sleeve material changes from steel to copper, the heat transfer thermal resistance is reduced, thereby increasing the melt solidification rate. This scenario helps increase the casting speed, thereby improving the manufacturing efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. G. Chen, J. Li, and G. Xu: J. Mater. Process. Technol., 2017, vol. 246, pp. 1–12.

    Article  CAS  Google Scholar 

  2. M. Xu, M. Zhu, and G. Wang: Metall. Mater. Trans. B., 2015, vol. 46B(3), pp. 1510–19.

    Article  Google Scholar 

  3. M. Xu and M. Zhu: Metall. Mater. Trans. B., 2016, vol. 47B(1), pp. 740–48.

    Article  Google Scholar 

  4. P. Chen, H. Huang, C. Ji, X. Zhang, and Z. Sun: Trans. Nonferrous Met. Soc. China., 2018, vol. 28, pp. 2460–69.

    Article  CAS  Google Scholar 

  5. D.W. Kim, D.H. Lee, J.S. Kim, S.S. Sohn, H.S. Kim, and S. Lee: Sci. Rep., 2017, vol. 7(1), pp. 1–11.

    Article  Google Scholar 

  6. C. Ji, H. Huang, X. Zhang, and X. Zhao: Metall. Mater. Trans. B., 2020, vol. 51(4), pp. 1617–31.

    Article  CAS  Google Scholar 

  7. A. Hadadzadeh, M.A. Wells, and V. Jayakrishnan: Int. J. Adv. Manuf. Technol., 2014, vol. 73, pp. 449–63.

    Article  Google Scholar 

  8. J. Park, H. Song, J.S. Kim, S.S. Sohn, and S. Lee: Metall. Mater. Trans. A., 2017, vol. 48A(1), pp. 57–62.

    Article  Google Scholar 

  9. J.H. Bae, A.K. Prasada Rao, K.H. Kim, and N.J. Kim: Scr. Mater., 2011, vol. 64, pp. 836–39.

    Article  CAS  Google Scholar 

  10. R. Nakamura, T. Haga, H. Tsuge, S. Kumai, and H. Watari: Adv. Mater. Res., 2011, vol. 189–193, pp. 4037–40.

    Article  Google Scholar 

  11. R. Nakamura, T. Haga, S. Kumai, and H. Watari: Adv. Mater. Res., 2010, vol. 97–101, pp. 1053–56.

    Article  Google Scholar 

  12. J.J. Park: Int. J. Heat Mass Transf., 2016, vol. 93, pp. 491–99.

    Article  CAS  Google Scholar 

  13. O. Grydin, G. Gerstein, F. Nürnberger, M. Schaper, and V. Danchenko: J. Manuf. Process., 2013, vol. 15(4), pp. 501–07.

    Article  Google Scholar 

  14. D. Münster and G. Hirt: Metals., 2019, vol. 9(11), p. 1156.

    Article  Google Scholar 

  15. M. Stolbchenko, O. Grydin, and M. Schaper: Adv. Eng. Mater., 2019, vol. 21(4), p. 1800454.

    Article  Google Scholar 

  16. C. Ji, H. Huang, J. Zhang, and R. Zhao: Appl. Therm. Eng., 2019, vol. 158, p. 113818.

    Article  CAS  Google Scholar 

  17. S. Sahoo, A. Kumar, B.K. Dhindaw, and S. Ghosh: Metall. Mater. Trans. B., 2012, vol. 43B, pp. 915–24.

    Article  Google Scholar 

  18. J.J. Park: Metall. Mater. Trans. A., 2018, vol. 941A, pp. 1354–59.

    Google Scholar 

  19. M. Stolbchenko, O. Grydin, A. Samsonenko, V. Khvist, and M. Schaper: Forsch. Ingenieurwes., 2014, vol. 78, pp. 121–30.

    Article  CAS  Google Scholar 

  20. J.J. Park: Int. J. Heat Mass Transf., 2016, vol. 100, pp. 590–98.

    Article  CAS  Google Scholar 

  21. J. Zhang, H. Huang, R. Zhao, M. Feng, and K. Meng: Trans. Nonferrous Met. Soc. China., 2021, vol. 31(3), pp. 626–35.

    Article  CAS  Google Scholar 

  22. P.K. Penumakala, A.K. Nallathambi, E. Specht, U. Urlau, D. Hamilton, and C. Dykes: Appl. Therm. Eng., 2018, vol. 134, pp. 275–86.

    Article  Google Scholar 

  23. S. Li, C. He, J. Fu, J. Xu, G. Xu, and Z. Wang: Mater. Charact., 2020, vol. 161, p. 145.

    Google Scholar 

Download references

Acknowledgements

This project is supported by the National Key Research and Development Project of China (2018YFA0707303), the National Natural Science Foundation of China (51974278), the Natural Science Foundation of Hebei Province Distinguished Young Fund Project (E2018203446), the Natural Science Foundation of Hebei Province Young Fund Project (E2020203118), and the Hebei Province High Level Talent Fund Project (B2020003013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huagui Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Huang, H., Yan, M. et al. Effect of Cast Roll Sleeve Material on Temperature Field of Sandwich Composite Plate Solid-Liquid-Solid Twin-Roll Casting Process. Metall Mater Trans B 53, 2051–2065 (2022). https://doi.org/10.1007/s11663-022-02503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02503-8

Navigation