Skip to main content
Log in

CFD Simulation of Suspension Characteristics in a Stirred Tank for Slurry Electrolysis

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Slurry electrolysis (SE) is a one-step green electrochemical technology used for the treatment of complex ores and solid waste. To explore the solid–liquid suspension characteristics of an SE stirred tank for antimony ores, a computational fluid dynamics (CFD) model was adopted using a Eulerian-Eulerian model. The kinetic theory of granular flow model was utilized to consider the particle–particle and particle–wall interactions. The solids holdup distribution predicted by the CFD model was consistent with water model experiments. According to the velocity vector distribution, the stirred tank was divided into five regions. The solids concentration was higher in the weak circulation region around the tank wall, and it was lower in the convection region and the upper part of the fluid falling region. Moreover, the variation curves of the liquid velocity and solids concentration demonstrated that the flow was centrally symmetric and that the presence of membranes and anodes contributed to the ordering of fluid flow. The mixing times in the strong circulation and weak circulation regions were both close to 20 seconds. The fluid flow between the anodic baffles, 94 seconds, was the limiting factor for mixing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.F. Qiu: Min. Metall., 1998, vol. 7(4), pp. 40–5 (in Chinese).

    CAS  Google Scholar 

  2. C.Y. Wang, D.F. Qiu, F. Yin, H.Y. Wang, and Y.Q. Chen: Trans. Nonferrous Met. Soc. China., 2010, vol. 20(S1), pp. 60–64.

    Article  Google Scholar 

  3. Q. Wang, Y. Zhu, Q.Y. Wu, E. Gratz, and Y. Wang: RSC Adv., 2015, vol. 5(8), pp. 5501–07.

    Article  CAS  Google Scholar 

  4. Q. Wang and Y. Wang: ACS Appl. Mater. Interfaces., 2016, vol. 8(16), pp. 10334–42.

    Article  CAS  Google Scholar 

  5. Q. Wang, M.C. Shang, Y. Zhang, Y. Yang, and Y. Wang: ACS Appl. Mater. Interfaces., 2018, vol. 10(8), pp. 7162–70.

    Article  CAS  Google Scholar 

  6. Y.L. Zhang, C.Y. Wang, Y.Q. Chen, Y.Q. Yang, W.F. Wang, and X. Xie: Nonferrous Met. (Extract Metall)., 2014, vol. (11), pp. 16–20 (in Chinese).

  7. Y.Q. Chen, Y. Liu, C.Y. Wang, Y.Q. Yang, and Y.L. Zhang: Nonferrous Met. (Extract Metall)., 2015, vol. (12), pp. 5–7 (in Chinese).

  8. Y.L. Zhang, C.Y. Wang, B.Z. Ma, X.W. Jie, and P. Xing: Hydrometallurgy., 2019, vol. 186, pp. 284–91.

    Article  CAS  Google Scholar 

  9. X.W. Yang, Y.J. Zhang, L.H. Deng, and D.F. Qiu: Eng. Sci., 2000, vol. 2(6), pp. 49–51 (in Chinese).

    Google Scholar 

  10. C.Y. Wang, D.F. Qiu, Y.S. Zhang, and P.H. Jiang: Nonferrous Met., 1995, vol. 47(2), pp. 54–59 (in Chinese).

  11. Y.L. Zhang, C.Y. Wang, X.W. Jie, W. Gao, S.F. Ruan: Nonferrous Met. (Extract Metall)., 2020, vol. (7), pp. 1–4 (in Chinese).

  12. W. Jin and Y. Zhang: ACS Sustain. Chem. Eng., 2020, vol. 8(12), pp. 4693–4707.

    Article  CAS  Google Scholar 

  13. Y.D. Xue and Y.T. Wang: Green Chem., 2020, vol. 22(19), pp. 6288–6309.

    Article  CAS  Google Scholar 

  14. Y.G. Zhang, M.J. Chen, Q.X. Tan, B. Wang, and S. Chen: Hydrometallurgy., 2018, vol. 175, pp. 150–54.

    Article  CAS  Google Scholar 

  15. S. Hosseini, D. Patel, F. Ein-Mozaffari, and M. Mehrvar: Ind. Eng. Chem. Res., 2010, vol. 49(9), pp. 4426–35.

    Article  CAS  Google Scholar 

  16. S. Hosseini, D. Patel, F. Ein-Mozaffari, and M. Mehrvar: Chem. Eng. Sci., 2010, vol. 65(4), pp. 1374–84.

    Article  CAS  Google Scholar 

  17. Z. Chen, P. Zhou, P. Li, G.M. Xiao, H.J. Yan, and W.W. Wei: Chin. J. Nonferrous Met., 2012, vol. 22(6), 1835–41.

  18. A. Tamburini, A. Cipollina, G. Micale, A. Brucato, and M. Ciofalo: Chem. Eng. J., 2012, vol. 193, pp. 234–55.

    Article  Google Scholar 

  19. A. Tamburini, A. Cipollina, G. Micale, A. Brucato, and M. Ciofalo: Chem. Eng. J., 2013, vol. 223, pp. 875–90.

    Article  CAS  Google Scholar 

  20. A. Kazemzadeh, F. Ein-Mozaffari, and A. Lohi: Powder Technol., 2020, vol. 360, pp. 635–48.

    Article  CAS  Google Scholar 

  21. H.L. Lu, Y.R. He, and D. Gidaspow: Chem. Eng. Sci., 2003, vol. 58(7), pp. 1197–1205.

    Article  CAS  Google Scholar 

  22. D. Wadnerkar, M.O. Tade, V.K. Pareek, and R.P. Utikar: Particuology, 2016, vol. 29, pp. 16–33.

  23. L. Yang, J.T. Padding, and J.A.M. Kuipers: Chem. Eng. Sci., 2016, vol. 152, pp. 783–94.

    Article  CAS  Google Scholar 

  24. L. Xie, J.D. Zhu, J. Hu, and C.W. Jiang: Miner. Eng., 2020, vol. 149, p. 10628.

    Article  Google Scholar 

  25. S.Y. Wang, X.X. Jiang, R.C. Wang, X. Wang, and S.W. Yang: Adv. Powder Technol., 2017, vol. 28(6), pp. 1611–24.

    Article  Google Scholar 

  26. L. Xie and Z.H. Luo: Chem. Eng. Sci., 2018, vol. 176, pp. 439–53.

    Article  CAS  Google Scholar 

  27. H.J. Duan, L.F. Zhang, B.G. and Thomas, and A.N. Conejo: Metall. Mater. Trans. B, 2018, vol. 49(5). pp. 2722–43.

  28. P. Mishra and F. Ein-Mozaffari: Int. J. Multiph. Flow., 2017, vol. 91, pp. 194–207.

    Article  CAS  Google Scholar 

  29. T. Wang, G.Z. Yu, Y.M. Yong, C. Yang, and Z.S. Mao: Ind. Eng. Chem. Res., 2010, vol. 49(3), pp. 1001–09.

    Article  CAS  Google Scholar 

  30. H.L. Zhao, Z.M. Zhang, T.A. Zhang, Y. Liu, and S.Q. Gu: Trans. Nonferrous Met. Soc. China., 2014, vol. 24(8), pp. 2650–59.

    Article  CAS  Google Scholar 

  31. A.W. Patwardhan and J.B. Joshi: Ind. Eng. Chem. Res., 1999, vol. 38, pp. 3131–43.

    Article  CAS  Google Scholar 

  32. G.J. Zhang, J. Min, Z.M. Gao, and L.T. Shi: J. Chem. Eng. Chin. Univ., 2005, vol. 19(2), pp. 169–74.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports from the National Natural Science Foundation of China (No. 51974018).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongliang Zhao or Fengqin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Shen, H., Na, G. et al. CFD Simulation of Suspension Characteristics in a Stirred Tank for Slurry Electrolysis. Metall Mater Trans B 53, 1747–1758 (2022). https://doi.org/10.1007/s11663-022-02484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02484-8

Navigation