Skip to main content
Log in

Improved In-Mold Metallurgical Behavior for Slab Casting of IF Steels by a Novel Multi-poles Electromagnetic Stirring

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

For the application of a novel in-mold multi-poles electromagnetic rotative stirring (EMRS) instrumentation, a coupled three-dimensional numerical model is established to study the effect of EMRS on the metallurgical behavior in the mold of 2150 mm × 230 mm size slab casting. The model is validated experimentally through the measurement of magnetic flux density and electromagnetic force. It has been proved that both the magnetic flux density and electromagnetic force produced by the in-mold multi-poles traveling wave stirring are mainly concentrated in front of the initial solidified shell along the mold wide sides especially at an optimal frequency of 4 Hz, which can produce a beneficial horizontal flow pattern for interstitial-free steels to wash away any hooked inclusions and/or bubbles under the meniscus. When the current intensity increases from 0 to 400 A, six swirl flows are observed in the cross-section of the mold stirrer center, the jet flow impinging depth decreased by 162 mm, and the tangential velocities of fluid flow on the solidification front increased by 0.126 and 0.120 m s−1 on the narrow and wide sides, respectively, which should be the key reasons for the washing and floating removal of the locally hooked inclusions. Meanwhile, the level fluctuation and shell thickness on the narrow side of mold decreased at first but increased later with an increasing current. A comprehensive evaluation method for the mold metallurgical behavior of EMRS is proposed based on the results from the numerical model and the statistical analysis of defect ratio in actual steel productions. It suggests that the optimum stirring current intensity is 300 A, which can cut the defect ratio of the hot rolled plates down to the lowest value of 0.06 pct while produced by the slab continuous casting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B.G. Thomas and L.F. Zhang: ISIJ Int., 2007, vol. 41, pp. 1181–2119.

    Article  Google Scholar 

  2. J. Sengupta, H.J. Shini, B.G. Thomas, and S.H. Kim: Acta Mater., 2006, vol. 54, pp. 1165–73.

    Article  CAS  Google Scholar 

  3. P.C. Xiao, X.Y. Wu, L.G. Zhu, and Z.X. Liu: Metall. Res. Technol., 2019, vol. 116, pp. 103–13.

    Article  Google Scholar 

  4. Z.H. Chen, E.G. Wang, and J.C. He: Steelmaking., 2004, vol. 20, pp. 48–52.

    Google Scholar 

  5. K. Takatani: Tetsu-to-Hagane., 2004, vol. 90, pp. 751–57.

    Article  CAS  Google Scholar 

  6. J. Nagai, K. Suzuki, S. Kojima, and S. Kollberg: Iron Steel Eng., 1984, vol. 61, pp. 41–47.

    Google Scholar 

  7. H. Harada, E. Takeuchi, M. Zeze, and H. Tanaka: Appl. Math. Model., 1998, vol. 22, pp. 873–82.

    Article  Google Scholar 

  8. M. Zeze, H. Harada, E. Takeuchi, and T. Ishi: Iron Steelmak., 1993, vol. 20, pp. 53–57.

    Google Scholar 

  9. S.M. Cho and B.G. Thomas: Metals., 2019, vol. 9, p. 471.

    Article  CAS  Google Scholar 

  10. A. Lehman: Fuel Energy Abstr., 1996, vol. 4, p. 293.

    Google Scholar 

  11. S. Itoyama: CAMP-ISIJ, 2001, vol. 14, p. 893.

  12. H.H. Visser, W.D. Knoop, W.F.M. Damen, T.G. Essem, and J.P.T.M. Brockhoff: Metall. Ital., 2009, vol. 101, pp. 489–99.

    Google Scholar 

  13. S. Kunstreich: Metall. Res. Technol., 2003, vol. 100, pp. 395–408.

    CAS  Google Scholar 

  14. S. Kunstreich: Metall. Res. Technol., 2003, vol. 100, pp. 1043–61.

    Google Scholar 

  15. Y.B. Yin, J.M. Zhang, B. Wang, and Q.P. Dong: Ironmak. Steelmak., 2019, vol. 46, pp. 682–91.

    Article  CAS  Google Scholar 

  16. B. Li, H.B. Lu, Y.B. Zhong, Z.M. Ren, and Z.S. Lei: ISIJ Int., 2020, vol. 60, pp. 1204–12.

    Article  CAS  Google Scholar 

  17. D.B. Jiang and M.Y. Zhu: Steel Res. Int., 2015, vol. 86, pp. 993–1003.

    Article  CAS  Google Scholar 

  18. P. Wang, Z. Zhang, Z.P. Tie, M. Qi, P. Lan, S.X. Li, Z.B. Yang, and J.Q. Zhang: Metals., 2019, vol. 9, pp. 1083–97.

    Article  CAS  Google Scholar 

  19. M.R. Aboutalebi, R.I.L. Guthrie, and S.H. Seyedein: Appl. Math. Model., 2007, vol. 31, pp. 1671–89.

    Article  Google Scholar 

  20. W.P. Jones and B.E. Launder: Int. J. Heat Mass Transf., 1973, vol. 16, pp. 1119–30.

    Article  Google Scholar 

  21. K.Y.M. Lai, M. Salcudean, S. Tanaka, and R.I.L. Guthrie: Metall. Mater. Trans. B., 1986, vol. 17B, pp. 449–59.

    Article  Google Scholar 

  22. Q.P. Dong, J.M. Zhang, Y.B. Yin, and B. Wang: Metals., 2017, vol. 7, p. 209.

    Article  Google Scholar 

  23. Q.Q. Wang and L.F. Zhang: JOM., 2016, vol. 68, pp. 2170–79.

    Article  CAS  Google Scholar 

  24. S.X. Li, X.M. Zhang, L. Li, P. Lan, H.Y. Tang, and J.Q. Zhang: Chin. J. Eng., 2019, vol. 41, pp. 199–208.

    Google Scholar 

  25. P. Wang, S.X. Li, Z.P. Tie, H.S. Liu, H.Y. Tang, P. Lan, and J.Q. Zhang: AIST, 2019, pp. 1363–71.

  26. P. Wang, S.X. Li, Z. Zhang, Z.P. Tie, Y.N. Dong, W. Zhang, and J.Q. Zhang: J. Mech. Eng., 2020, vol. 56, pp. 99–106.

    Google Scholar 

  27. P.P. Sahoo, A. Kumar, J. Halder, and M. Raj: ISIJ Int., 2009, vol. 49, pp. 521–28.

    Article  CAS  Google Scholar 

  28. L.F. Zhang: Iron Steel Technol., 2010, vol. 7, pp. 55–69.

    CAS  Google Scholar 

  29. Y.Q. Li, J.H. Liu, Y. He, K. Dong, P. Zhang, and G.Y. Zheng: Spec. Steel., 2019, vol. 40, pp. 1–6.

    Google Scholar 

  30. S. Kittaka, T. Kanki, K. Watanabe, and Y. Miura: Nippon Steel Tech. Rep., 2002, vol. 86, pp. 68–73.

    Google Scholar 

  31. B. Mao, G.F. Zhang, and A.W. Li: Theory and Technology of Electromagnetic Stirring for Continuous Cast Steel, Metallurgical Industry Press, Beijing, 2012, p. 225.

    Google Scholar 

  32. B.H. Thomas: Iron Steel Technol., 2006, vol. 3, p. 127.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51874033 and U1860111).

Author Contributions

PW and HX: conceptualization; PW and XC: methodology; WL and BY: investigation; HT and JZ: resources; PW, HX, and XC: writing—original draft preparation; PW, HT, and JZ: writing—review and editing; XC and PW: visualization; HX, HT, and JZ: supervision; HT and JZ: project administration.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-yan Tang or Jia-quan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Xiao, H., Chen, Xq. et al. Improved In-Mold Metallurgical Behavior for Slab Casting of IF Steels by a Novel Multi-poles Electromagnetic Stirring. Metall Mater Trans B 53, 1691–1702 (2022). https://doi.org/10.1007/s11663-022-02478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02478-6

Navigation