Skip to main content
Log in

Effect of MgO on the Viscosity and Structure of CaO-Al2O3-B2O3-Based Non-reactive Mold Flux

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of MgO on the viscosity and structure of CaO-Al2O3-B2O3-based non-reactive mold flux was studied by rotational viscometer, molecular dynamics (MD) simulations, and Raman spectroscopy. The results show that with the increase of MgO content from 3 °C to 9 pct, the viscosity (the testing temperature is 1300 °C) of the sample decreases from 0.39 to 0.26 Pa seconds, the activation energy decreases from 158.7 to 119.7 kJ/mol, and the break temperature (Tbr) decreases from 1212 °C to 1157 °C. Triple-coordinated oxygen and highly coordinated Al appear in the mold flux to compensate for the excess negative charge of [AlO4]5- tetrahedron. With the increase of MgO content, the stability of the Al-O network structure is enhanced, but the degree of polymerization of melt and the complexity of network structure decrease. With the increase of MgO content, the amount of bridging oxygen in the system decreases, and the polymerization degree of the aluminate network in mold flux decreases. The results of Raman spectra are consistent with those of MD simulation. Therefore, MgO can simplify the melt structure and reduce the viscosity of mold flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Q. Wang, S.T. Qiu, and P. Zhao: Metall. Mater. Trans. B., 2012, vol. 43B, pp. 424–30. https://doi.org/10.1007/s11663-011-9600-8.

    Article  CAS  Google Scholar 

  2. W.L. Wang, K. Blazek, and A. Cramb: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 66–74. https://doi.org/10.1007/s11663-007-9110-x.

    Article  CAS  Google Scholar 

  3. T. Wu, Q. Wang, S.P. He, L.F. Xu, X. Long, and Y.J. Lu: Steel Res. Int., 2012, vol. 83, pp. 1194–1202. https://doi.org/10.1002/srin.201200092.

    Article  CAS  Google Scholar 

  4. Q. Wang, M. Sun, S.T. Qiu, Z. Tian, G. Zhu, L. Wang, and P. Zhao: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 540–46. https://doi.org/10.1007/s11663-013-9929-2.

    Article  CAS  Google Scholar 

  5. Q. Liu, G. Wen, J. Li, X. Fu, P. Tang, and W. Li: Ironmaking Steelmaking., 2000, vol. 41, pp. 292–97. https://doi.org/10.1179/1743281213Y.0000000131.

    Article  CAS  Google Scholar 

  6. S. Ren, J. Zhang, L. Wu, W. Liu, Y. Bai, X. Xing, B. Su, and D. Kong: ISIJ Int., 2012, vol. 52, pp. 984–91. https://doi.org/10.2355/isijinternational.52.984.

    Article  CAS  Google Scholar 

  7. X.H. Huang, J.L. Liao, K. Zheng, H.H. Hu, F.M. Wang, and Z.T. Zhang: Ironmaking Steelmaking., 2014, vol. 41, pp. 67–74. https://doi.org/10.1179/1743281213Y.0000000107.

    Article  CAS  Google Scholar 

  8. S.Y. Choi, D.H. Lee, D.W. Shin, J.W. Cho, and J.M. Park: J. Non-Cryst. Solids., 2004, vol. 345, pp. 157–60. https://doi.org/10.1016/j.jnoncrysol.2004.08.015.

    Article  CAS  Google Scholar 

  9. Y. Gao, S. Wang, C. Hong, X. Ma, and F. Yang: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 353–62. https://doi.org/10.1007/s12613-014-0916-7.

    Article  CAS  Google Scholar 

  10. E. Gao, W. Wang, and L. Zhang: J. Non-Cryst. Solids., 2017, vol. 435, pp. 79–86. https://doi.org/10.1016/j.jnoncrysol.2017.07.029.

    Article  CAS  Google Scholar 

  11. H. Wang, P. Tang, G.H. Wen, and X. Yu: Chin. J. Process. Eng., 2010, vol. 10, pp. 905–10. https://doi.org/10.1155/2010/293410.

    Article  CAS  Google Scholar 

  12. J. Qi, C. Liu, H. Liu, C. Li, and M. Jiang: J. Non-Cryst. Solids., 2021, vol. 559, pp. 1–8. https://doi.org/10.1016/j.jnoncrysol.2021.120681.

    Article  CAS  Google Scholar 

  13. Z.R. Li, X.C. You, M. Li, Q. Wang, S.P. He, and Q.Q. Wang: Met. Open Access Metal. J., 2019, vol. 9, pp. 1–13. https://doi.org/10.3390/met9020142.

    Article  CAS  Google Scholar 

  14. W. Yan, W. Chen, Y. Yang, C. Lippold, and A. McLean: Ironmaking Steelmaking., 2015, vol. 42, pp. 698–704. https://doi.org/10.1179/1743281215Y.0000000024.

    Article  CAS  Google Scholar 

  15. B.X. Lu, K. Chen, W.L. Wang, and B. Jiang: Metall. Mater. Trans. B., 2014, vol. 45, pp. 1496–1509. https://doi.org/10.1007/s11663-014-0063-6.

    Article  CAS  Google Scholar 

  16. W. Yan, W. Chen, Y. Yang, C. Lippold, and A. Mclean: Ironmaking Steelmaking., 2016, vol. 43, pp. 316–23. https://doi.org/10.1179/1743281215Y.0000000062.

    Article  CAS  Google Scholar 

  17. H. Wang, P. Tang, G.H. Wen, and X. Yu: Ironmaking Steelmaking., 2011, vol. 38, pp. 369–73. https://doi.org/10.1179/1743281211Y.0000000011.

    Article  CAS  Google Scholar 

  18. M.J. Toplis, D.B. Dingwell, and T. Lenci: Geochim. Cosmochim. Acta., 1997, vol. 61, pp. 2605–12. https://doi.org/10.1016/s0016-7037(97)00126-9.

    Article  CAS  Google Scholar 

  19. S. Lee and D.J. Min: J. Am. Ceram. Soc., 2017, vol. 100, pp. 2543–52. https://doi.org/10.1111/jace.14787.

    Article  CAS  Google Scholar 

  20. S. Huang, G. Jiang, K. Xu, F. Yoshida, and J. You: Metall. Mater. Trans. B., 2000, vol. 31B, pp. 1241–45. https://doi.org/10.1007/s11663-000-0011-5.

    Article  CAS  Google Scholar 

  21. T. Wu, S. He, and Y. Liang: J. Non-Crystal. Solids., 2015, vol. 411, pp. 145–51. https://doi.org/10.1016/j.jnoncrysol.2014.12.030.

    Article  CAS  Google Scholar 

  22. Z. Wang, S. Cai, M. Zhang, M. Guo, and Z. Zhang: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 1–10. https://doi.org/10.1007/s11663-017-0924-x.

    Article  CAS  Google Scholar 

  23. J. Kieffer and C.A. Angell: J. Chem. Phys., 1989, vol. 90, pp. 4982–91. https://doi.org/10.1063/1.456567.

    Article  CAS  Google Scholar 

  24. P. Ganster, M. Benoit, W. Kob, and J.M. Delaye: J. Chem. Phys., 2004, vol. 120, pp. 10172–81. https://doi.org/10.1063/1.1724815.

    Article  CAS  Google Scholar 

  25. T. Wu, W. Cui, B. Cao, Y. Zhu, and Q. Ouyang: Build. Environ., 2016, vol. 108, pp. 23–29. https://doi.org/10.1016/j.buildenv.2016.08.008.

    Article  Google Scholar 

  26. T. Wu, Q. Wang, T. Yao, and S. He: J. Non-Cryst. Solids., 2016, vol. 435, pp. 17–26. https://doi.org/10.1016/j.jnoncrysol.2015.12.025.

    Article  CAS  Google Scholar 

  27. K.C. Mills and B.J. Keene: Int. Mater. Rev., 1987, vol. 32, pp. 1–120. https://doi.org/10.1179/095066087790150296.

    Article  CAS  Google Scholar 

  28. J.S. Choi, T.J. Park, and D.J. Min: J. Am. Ceram. Soc., 2020, vol. 104, pp. 140–56. https://doi.org/10.1111/jace.17432.

    Article  CAS  Google Scholar 

  29. G.H. Kim and I. Sohn: J. Am. Ceram. Soc., 2019, vol. 102, pp. 6575–90. https://doi.org/10.1111/jace.16526.

    Article  CAS  Google Scholar 

  30. H. Kim, W.H. Kim, J.H. Park, and D.J. Min: Steel Res. Int., 2010, vol. 81, pp. 17–24. https://doi.org/10.1002/srin.200900118.

    Article  CAS  Google Scholar 

  31. H. Kim, W.H. Kim, I.I. Sohn, and D.J. Min: Steel Res. Int., 2010, vol. 81, pp. 261–64. https://doi.org/10.1002/srin.201000019.

    Article  CAS  Google Scholar 

  32. G.H. Kim and I.L. Sohn: Effect of Al2O3 on the viscosity and structure of calcium silicate-based melts containing Na2O and CaF2. J. Non-Crystal. Solids., 2012, vol. 358, pp. 12–13.

    Article  Google Scholar 

  33. H.S. Park, H. Kim, and I. Sohn: Metall. Mater. Trans. B., 2011, vol. 42B, pp. 324–30. https://doi.org/10.1007/s11663-011-9474-9.

    Article  CAS  Google Scholar 

  34. S. Sridhar, K.C. Mills, O.D.C. Afrange, H.P. Lrz, and R. Carli: Ironmaking Steelmaking., 2000, vol. 27, pp. 238–42. https://doi.org/10.1179/030192300677534.

    Article  CAS  Google Scholar 

  35. D.K. Belashchenko, I.E. Gopengauz, A.B. Grytsenko, and O.I. Ostrovskij: ISIJ Int., 1992, vol. 32, pp. 990–97. https://doi.org/10.2355/isijinternational.32.990.

    Article  CAS  Google Scholar 

  36. R.N. Mead and G. Mountjoy: J. Phys. Chem. B., 2006, vol. 110, pp. 14273–78. https://doi.org/10.1021/jp0628939.

    Article  CAS  Google Scholar 

  37. B.W.M. Thomas, R.N. Mead, and G. Mountjoy: J. Phys.: Condens. Matter., 2006, vol. 18, pp. 4697–4708. https://doi.org/10.1088/0953-8984/18/19/021.

    Article  CAS  Google Scholar 

  38. Q. Mei, C.J. Benmore, J. Siewenie, J.K.R. Weber, and M. Wilding: J. Phys.: Condens. Matter., 2008, vol. 20, pp. 266–72. https://doi.org/10.1088/0953-8984/20/24/245106.

    Article  CAS  Google Scholar 

  39. A.C. Hannon and J.M. Parker: J. Non-Cryst. Solids., 2000, vol. 274, pp. 102–09. https://doi.org/10.1016/S0022-3093(00)00208-8.

    Article  CAS  Google Scholar 

  40. G.H. Kim, C.S. Kim, and I. Sohn: ISIJ Int., 2013, vol. 53, pp. 170–76. https://doi.org/10.2355/isijinternational.53.170.

    Article  CAS  Google Scholar 

  41. D.R. Neuville, L. Cormier, and D. Massiot: Chem Geol., 2006, vol. 229, pp. 173–85. https://doi.org/10.1016/j.chemgeo.2006.01.019.

    Article  CAS  Google Scholar 

  42. J. Gao, G. Wen, T. Huang, B. Bai, P. Tang, Q. Liu, and C. Jantzen: J. Am. Ceram. Soc., 2016, vol. 99, pp. 3941–47. https://doi.org/10.1111/jace.14444.

    Article  CAS  Google Scholar 

  43. T.S. Kim and J.H. Park: ISIJ Int., 2014, vol. 54, pp. 2031–38. https://doi.org/10.2355/isijinternational.54.2031.

    Article  CAS  Google Scholar 

  44. G.H. Kim and I. Sohn: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 86–95. https://doi.org/10.1007/s11663-013-9953-2.

    Article  CAS  Google Scholar 

  45. S. Shirayama, H. Aoki, Y. Yanaba, Y. Kim, and K. Morita: ISIJ Int., 2020, vol. 60, pp. 392–99. https://doi.org/10.2355/isijinternational.ISIJINT-2019-251.

    Article  CAS  Google Scholar 

  46. Y. Kim and K. Morita: J. Non-Cryst. Solids., 2017, vol. 471, pp. 187–94. https://doi.org/10.1016/j.jnoncrysol.2017.05.034.

    Article  CAS  Google Scholar 

  47. J. Yang, Y. Kim, and I. Sohn: J. Market. Res., 2021, vol. 10, pp. 268–81. https://doi.org/10.1016/j.jmrt.2020.12.028.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by the National Natural Science Foundation of China (Grant Nos. 51974132, U1738101, and 51974022) and Fundamental Research Funds for the Central Universities (Grant No. FRF-MP-20-17).

Conflict of interest

On behalf of all the authors, the corresponding author states that there are no conflicts of interest pertaining this study and manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihua Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Han, Y., Yuan, Z. et al. Effect of MgO on the Viscosity and Structure of CaO-Al2O3-B2O3-Based Non-reactive Mold Flux. Metall Mater Trans B 53, 1504–1515 (2022). https://doi.org/10.1007/s11663-022-02460-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02460-2

Navigation