Skip to main content
Log in

Thermomechanical Analysis of Continuous Casting Round Billet Based on the Element-Free Galerkin Method

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

When dealing with coupled thermomechanical challenges, the conventional mesh-based numerical methods show significant disadvantages in solving the problems of dynamic tracking phase interface and imposition of ferrostatic pressure. In the present work, a thermo-elastic-plastic calculation model for continuous casting round billet is established based on the element-free Galerkin (EFG) method. In the plastic deformation stage, the Mises criterion with isotropic hardening is used to describe the correlation between the yield and strengthening functions. Considering that the material properties as a function of temperature and the plastic deformation will cause a nonlinear stress–strain relationship, the incremental approach is applied in the solution process. Besides, the correction scheme is used to improve the stress calculation precision in the elastoplastic transition zone. Taking advantage of measured heat flux as the boundary condition, the nonuniform heat transfer/solidification and mechanical behaviors of round billet were calculated and analyzed. The results show that the established EFG model achieves good calculation accuracy when dealing with nonlinear thermomechanical problems. The maximum equivalent stress appears within 1 mm beneath the shell surface in the initial stage of solidification, while the shell surface presents maximum equivalent stress at the mold outlet. A potentially sensitive area for cracks will appear at 50 to 100 mm below the meniscus. The research results are helpful in understanding the nonuniform heat transfer, mechanical, and crack behaviors of round billet, which could provide theoretical support for process design and quality optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(p_{j} \left( {\varvec{x}} \right)\) :

Basis function (–)

\(a_{j} \left( {\varvec{x}} \right)\) :

Undetermined coefficient (–)

\(\Phi \) :

Shape function matrix (–)

ϕ :

Shape function (–)

k :

Thermal conductivity [W/(m·°C)]

ρ :

Density (kg/m3)

c :

Specific heat [J/(kg·°C)]

L :

Latent heat (J/kg)

f s :

Solid fraction (pct)

T :

Temperature [K (°C)]

c eff :

Effective specific heat [J/(kg·°C)]

C :

Heat capacity matrix (–)

K :

Heat conduction matrix (–)

F :

Heat load vector (–)

σ ij :

Stress tensor (–)

b i :

Body force vector (–)

ε ij :

Strain tensor (–)

\({{\varvec{u}}}_{i}\) :

Displacement vector (–)

\( {\varvec{\bar{u}}}_{i} \) :

Displacement components (–)

\(\overline{\varvec{t}}_{i}\) :

Stress components (–)

\({\mathbf{n}}_{j}\) :

Normal vector (–)

\(d{\left\{{\varvec{\varepsilon}}\right\}}_{e}\) :

Elastic strain increments (pct)

\(d{\left\{{\varvec{\varepsilon}}\right\}}_{p}\) :

Plastic strain increments (pct)

\(d{\left\{{\varvec{\varepsilon}}\right\}}_{T}\) :

Thermal strain increments (pct)

\(\left[{{\varvec{D}}}_{e}\right]\) :

Elastic stiffness matrix (–)

\(\left[{{\varvec{D}}}_{p}\right]\) :

Plastic stiffness matrix (–)

\(\left[{{\varvec{D}}}_{ep}\right]\) :

Elastoplastic stiffness matrix (–)

m :

Elasticity factor (–)

\(\left\{\boldsymbol{\alpha }\right\}\) :

Thermal expansion vector (–)

\(\stackrel{\sim }{\alpha }\) :

Penalty coefficient (–)

\( \bar{q} \) :

Measured heat flux (–)

p f :

Ferrostatic pressure (–)

\(g\) :

Gravity acceleration (m/s2)

v c :

Casting speed (m/s)

t :

Residence time (s)

K c :

Amplification factor (–)

References

  1. L. Zhang, H.F. Shen, T.Y. Huang, and B.C. Liu: Int. J. Cast. Met. Res., 2003, vol. 15, pp. 355–59.

    Article  Google Scholar 

  2. G.R. Liu and Y.T. Gu: An Introduction to Meshfree Methods and Their Programming, 1st ed. Springer, Dordrecht, 2005, pp. 54–111.

    Google Scholar 

  3. J.C. Alvarez Hostos, A.D. Bencomo, and E.S. Puchi Cabrera: J. Therm. Stresses., 2017, vol. 41, pp. 160–81.

    Article  Google Scholar 

  4. U. Hanoglu and B. Šarler: Comput. Struct., 2018, vol. 194, pp. 1–14.

    Article  Google Scholar 

  5. U. Hanoglu and B. Šarler: Metals., 2019, vol. 9, pp. 788–808.

    Article  CAS  Google Scholar 

  6. V. Hatic, B. Mavric, and B. Šarler: COUPLED VIII–Proc. Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering, 2019, pp. 118–27.

  7. B. Mavric and B. Šarler: COUPLED PROBLEMS–Proc. Int. Conf. on Coupled Problems in Science and Engineering, 2015, pp. 160–68.

  8. M. Alizadeh, S.A.J. Jahromi, and S.B. Nasihatkon: ISIJ Int., 2010, vol. 50, pp. 411–17.

    Article  CAS  Google Scholar 

  9. L. Zhang, Y.M. Rong, H.F. Shen, and T.Y. Huang: J. Mater. Process. Technol., 2007, vol. 192, pp. 511–17.

    Article  Google Scholar 

  10. R. Vertnik and B. Šarler: Int. J. Cast. Met. Res., 2009, vol. 22, pp. 311–13.

    Article  CAS  Google Scholar 

  11. R. Vertnik and B. Šarler: Eng. Anal. Bound. Elem., 2014, vol. 45, pp. 45–61.

    Article  Google Scholar 

  12. L. Zhang, H.F. Shen, Y.M. Rong, and T.Y. Huang: Mater. Sci. Eng., 2007, vol. 466A, pp. 71–78.

    Article  Google Scholar 

  13. R. Vaghefi, A. Nayebi, and M.R. Hematiyan: Acta Mech., 2018, vol. 229, pp. 4375–92.

    Article  Google Scholar 

  14. G.R. Liu: Mesh Free Methods Moving beyond the Finite Element Method, CRC Press LLC, Boca Raton, 2002, pp. 53–265.

    Book  Google Scholar 

  15. L.Q. Cai, X.D. Wang, N. Wang, and M. Yao: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 236–46.

    Article  Google Scholar 

  16. L.Q. Cai, X.D. Wang, M. Yao, and Y. Liu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1113–26.

    Article  Google Scholar 

  17. J.C. Álvarez Hostos, E.S. Puchi Cabrera, and A.D. Bencomo: Steel Res. Int., 2015, vol. 86, pp. 1403–18.

    Article  Google Scholar 

  18. T. Belytschko, Y.Y. Lu, and L. Gu: Int. J. Numer. Meth. Eng., 1994, vol. 37, pp. 229–56.

    Article  Google Scholar 

  19. C. Li and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 1151–72.

    Article  CAS  Google Scholar 

  20. J.C. Alvarez Hostos, A.D. Bencomo, E.S. Puchi Cabrera, and I.M. FigueroaPoleo: Int. J. Cast. Met. Res., 2018, vol. 31, pp. 47–55.

    Article  Google Scholar 

  21. R. Vaghefi, M.R. Hematiyan, A. Nayebi, and A. Khosravifard: Eng. Anal. Bound. Elem., 2018, vol. 89, pp. 10–24.

    Article  Google Scholar 

  22. K. Schwerdtfeger, M. Sato, and K.H. Tacke: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1057–68.

    Article  CAS  Google Scholar 

  23. B. Lally, L. Biegler, and H. Henein: Mater. Trans., 1990, vol. 21B, pp. 761–70.

    CAS  Google Scholar 

  24. H.B. Yin, M. Yao, H.Y. Zhan, and D.C. Fang: ISIJ Int., 2006, vol. 46, pp. 546–52.

    Article  Google Scholar 

  25. Y.M. Won: ISIJ Int., 1998, vol. 38, pp. 53–62.

    Article  CAS  Google Scholar 

  26. J.M. Risso, A.E. Huespe, and A. Cardona: Int. J. Numer. Meth. Eng., 2006, vol. 65, pp. 1355–77.

    Article  Google Scholar 

  27. V.D. Fachinotti and A. Cardona: Int. J. Numer. Meth. Eng., 2007, vol. 70, pp. 728–55.

    Article  Google Scholar 

  28. S. Koric and B.G. Thomas: Int. J. Numer. Meth. Eng., 2006, vol. 66, pp. 1955–89.

    Article  Google Scholar 

  29. B.G. Thomas and J.T. Parkman: THERMEC 97–Int. Conf. Thermomechanical Processing of Steels and Other Materials, 1997, vol. 2, pp. 2279–85.

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 51974056/51474047). The Fundamental Research Funds for the Central Universities and the Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province) are also gratefully acknowledged. Part of this work was performed using computational resources from the Supercomputing Center, Dalian University of Technology.

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Wei, J., Wang, X. et al. Thermomechanical Analysis of Continuous Casting Round Billet Based on the Element-Free Galerkin Method. Metall Mater Trans B 53, 1462–1473 (2022). https://doi.org/10.1007/s11663-022-02454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02454-0

Navigation