Skip to main content
Log in

Influence of the Residual Iron on the Erosion of Carbon Bricks in a 4000 m3 Blast Furnace Hearth: From the Measured Properties to the Proposed Mechanisms

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A blast furnace operates under a countercurrent flow process, and a wide variety of physical and chemical reactions take place, especially in the hearth at the highest temperature. Therefore, the working status and erosion of the carbon brick have a critical influence on the longevity of the blast furnace. Although the phenomena in the hearth cannot be directly observed through the black box, hearth dissection provides an alternative way to access and subsequently evaluate the internal conditions. In this paper, a 4000 m3 blast furnace hearth was dissected, and 12 residual iron samples were collected and subjected to composition, morphology, and thermal conductivity analyses. The results show that in the center of the hearth, the residual iron had thicker metallic iron strips. This is because the residual iron in the center of the dissected hearth was fully mixed with carbon or coke, and this mixing apparently enhanced the heat conductivity in the center of the hearth to as great as 80.5 W/(m K). However, such a mixing state was gradually relieved in the regions either close to the wall or settling on the bottom. Thus, the residual iron near the wall formed a needle-like surface with a layer-by-layer structure in the form of alternatively thinner strip-shaped carbon and metallic iron, and the thermal conductivities of the residual iron near the wall were above 40.0 W/(m K) regardless of the relative height. Moreover, the erosion mechanisms of the blast furnace hearth wall are proposed, and the erosion thickness is accordingly evaluated based on the heat transfer model, in which the measured thermal conductivities of the residual iron are taken into consideration. According to the erosion mechanism, the thickness of residual iron is thinner, the erosion is more serious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.L. Jiao, S.B. Kuang, L.L. Liu, A.B. Yu, Y.T. Li, X.M. Mao, and H. Xu: Metall. Mater. Trans. B, 2021, vol. 52B(1), pp. 138–55.

    Article  Google Scholar 

  2. S.B. Kuang, Z.Y. Li, and A.B. Yu: Steel Res. Int., 2018, vol. 89(1), p. 1700071.

    Article  Google Scholar 

  3. X.B. Yu and Y.S. Shen: Metall. Mater. Trans. B, 2020, vol. 51B(5), pp. 2079–94.

    Article  Google Scholar 

  4. L. Zhang, J.L. Zhang, K.X. Jiao, and C. Wang: ISIJ Int., 2020, vol. 60(8), pp. 1655–61.

    Article  CAS  Google Scholar 

  5. F.M. Zhang: J. Iron Steel Res. (Int.), 2013, vol. 20(9), pp. 53–60.

    Article  CAS  Google Scholar 

  6. J.F. Ma, H.B. Zhao, and S.S. Chen: J. Iron Steel Res. (Int.), 2009, vol. 16(5), pp. 859–63.

    Google Scholar 

  7. T.J. Park, K.H. Ko, J.H. Lee, S. Gupta, V. Sahajwalla, and B.C. Kim: Metall. Mater. Trans. B, 2020, vol. 51B(3), pp. 1282–88.

    Article  Google Scholar 

  8. L. Zhang, J.L. Zhang, K.X. Jiao, X.K. Zhang, S.J. Duan, X. Wu, and J.C. Wang: Metall. Res. Technol., 2021, vol. 118(4), p. 410.

    Article  CAS  Google Scholar 

  9. M. Naito, K. Takeda, and Y. Matsui: ISIJ Int., 2015, vol. 55(1), pp. 7–35.

    Article  CAS  Google Scholar 

  10. A. Preuer, J. Winter, and H. Hiebler: Steel Res., 1992, vol. 63(4), pp. 139–46.

    Article  CAS  Google Scholar 

  11. H. B. Zhao, S. S. Chen, J. F. Zhu, H. W. Pan, Z. J. Wang, and J. S. Sun: 5th International Congress on the Science and Technology of Ironmaking, ICSTI 2009, 2009, pp. 897–901.

  12. L. Zhang, J.L. Zhang, K.X. Jiao, G. Jia, J.T. Gong, X.T. Yang, M.X. Zhao, and W.B. Duan: Metall. Res. Technol., 2021, vol. 118(1), p. 106.

    Article  Google Scholar 

  13. P.C. Lai, S.W. Du, S.H. Liu, and W.T. Cheng: Thermal Sci. Eng. Prog., 2021, vol. 23, p. 100908.

    Article  Google Scholar 

  14. A. Shinotake, H. Nakamura, N. Yadoumaru, Y. Morizane, and M. Meguro: ISIJ Int., 2003, vol. 43(3), pp. 321–30.

    Article  CAS  Google Scholar 

  15. L. Shao and H. Saxén: Steel Res. Int., 2012, vol. 83(9), pp. 878–85.

    Article  CAS  Google Scholar 

  16. M.F. Barbés, R. Marinas, E. Brandaleze, R. Parra, and R. Colás: ISIJ Int., 2008, vol. 48(2), p. 134.

    Article  Google Scholar 

  17. C.E. Huang, S.W. Du, and W.T. Cheng: ISIJ Int., 2008, vol. 48(2008), pp. 1182–87.

    Article  CAS  Google Scholar 

  18. X.F. Dong and P. Zulli: Ironmak. Steelmak., 2020, vol. 47(3), pp. 307–15.

    Article  CAS  Google Scholar 

  19. X.F. Dong, P. Zulli, and M. Biasutti: Ironmak. Steelmak., 2019, vol. 47(5), pp. 1–6.

    Google Scholar 

  20. X.F. Wang and Q.J. Zhai: J. Iron Steel Res. (Int.)., 2017, vol. 24(10), pp. 1016–22.

    Article  Google Scholar 

  21. Q. Niu, S.S. Cheng, W.X. Xu, and W.J. Niu: ISIJ Int., 2019, vol. 59(10), pp. 1776–85.

    Article  CAS  Google Scholar 

  22. S.N. Silva, F. Vernilli, S.M. Justus, O.R. Marques, A. Mazine, J.B. Baldo, E. Longo, and J.A. Varela: Ironmak. Steelmak., 2013, vol. 32(6), pp. 459–67.

    Article  Google Scholar 

  23. K.X. Jiao, C. Wang, J.L. Zhang, S. Ren, and E. Dian-Yu: JOM, 2020, vol. 72(5), pp. 1935–42.

    Article  CAS  Google Scholar 

  24. M.S. Song and Z.J. Yu: Res. Iron Steel, 2009, vol. 37(2), pp. 1–6.

    CAS  Google Scholar 

  25. M.S. Song, Z.Q. Zou, and Z.J. Yu: China Metall., 2005, vol. 15(11), pp. 6–10.

    Google Scholar 

  26. L. Zhang, J.L. Zhang, K.X. Jiao, Z.P. Zou, and Y.J. Zhao: ISIJ Int., 2019, vol. 59(11), pp. 1991–96.

    Article  CAS  Google Scholar 

  27. K. Nishioka, T. Maeda, and M. Shimizu: ISIJ Int., 2005, vol. 45(5), pp. 669–76.

    Article  CAS  Google Scholar 

  28. K.X. Jiao, J.L. Zhang, Z.J. Liu, Z.Z. Liu, Y. Deng, and X.Y. Fan: Metall. Res. Technol., 2018, vol. 115(1), p. 109.

    Article  Google Scholar 

  29. H.B. Zhao, S.F. Huo, and S.S. Cheng: Int. J. Miner. Metall. Mater., 2013, vol. 20(4), pp. 345–53.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding through projects from the Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2019138), the Young Top-notch Talent Program of Chongqing, China (cstc2021ycjh-bgzxm0165).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Liao, Z., Hu, Z. et al. Influence of the Residual Iron on the Erosion of Carbon Bricks in a 4000 m3 Blast Furnace Hearth: From the Measured Properties to the Proposed Mechanisms. Metall Mater Trans B 53, 931–937 (2022). https://doi.org/10.1007/s11663-022-02438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02438-0

Navigation