Skip to main content
Log in

Self-digestion of Cr-Bearing Vanadium Slag Processing Residue via Hot Metal Pre-treatment in Steelmaking Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The vanadium slag processing residue (VSPR) is a hazardous waste produced during the vanadium extraction process based on steelmaking process, which contains various toxic and valuable metal elements including chromium, vanadium, and iron. To remediate the VSPR and recover the valuable elements, we propose a novel approach for VSPR self-digestion via the hot metal pre-treatment (an essential procedure before converter steelmaking). The carbothermic reduction roasting of VSPR was performed to decompose the stable spinel phase containing iron, chromium, and vanadium at 1100 °C, yielding pre-reduced VSPR (PR-VSPR). Consequently, the 85.1 pct of iron oxide in VSPR could be reduced into "joined crystal", while the chromium and vanadium mainly existed in the residual spinel with porous structure. The 30 pct CaO addition to adjust VSPR or PR-VSPR composition could significantly improve its smelting performance. After the interaction of the flux (VSPR & CaO) and the flux (PR-VSPR & CaO) with hot metal, the desulfurization rates of the hot metal reached 94.3 and 97.1 pct, respectively, meeting the desulfurization requirement for steelmaking. Correspondingly, the iron oxides in VSPR and PR-VSPR were reduced into hot metal with the recovery yield of 78.1 and 93.7 pct, respectively. A majority of chromium (66.0 pct) and vanadium (73.9 pct) from the flux (VSPR & CaO) remained in the spinel phase of residual slag, whereas a large proportion of vanadium (91.1 pct) and chromium (88.0 pct) from the flux (PR-VSPR & CaO) was recovered into the hot metal. Finally, we designed two process routes employing (VSPR & CaO) and (PR-VSPR & CaO), respectively, and the latter has advantages in the recovery of valuable elements and the harmlessness treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. X.F. Zhang, F.G. Liu, X.X. Xue, and T. Jiang: J. Alloys. Compd., 2016, vol. 686, pp. 356–65.

    Article  CAS  Google Scholar 

  2. B. Zhang, P.Y. Shi, and M.F. Jiang: Miner., 2016, vol. 6, pp. 7–18.

    Article  Google Scholar 

  3. J. Diao, W. Zhou, Z.Q. Ke, Y. Qiao, T. Zhang, X. Liu, and B. Xie: J. Clean. Prod., 2016, vol. 125, pp. 1159–67.

    Article  Google Scholar 

  4. J. Diao, Y.Y. Qiu, J. Lei, Q. Zhang, W.F. Tan, H.Y. Li, and B. Xie: JOM., 2021, vol. 73, pp. 999–1003.

    Article  CAS  Google Scholar 

  5. J. Diao, L. Liu, J. Lei, W.F. Tan, H.Y. Li, and B. Xie: Metall. Mater. Trans. B., 2021, vol. 52, pp. 494–501.

    Article  CAS  Google Scholar 

  6. X. Zhang, B. Xie, J. Diao, and X.J. Li: Ironmak. Steelmak., 2012, vol. 39, pp. 147–54.

    Article  Google Scholar 

  7. Y. Guo, H.Y. Li, Y.H. Yuan, J. Huang, J. Diao, G. Li, and B. Xie: Int. J. Miner Metall. Mater., 2021, vol. 28, pp. 974–80.

    Article  CAS  Google Scholar 

  8. G. Wang, M.M. Lin, J. Diao, H.Y. Li, B. Xie, and G. Li: ACS Sustain. Chem. Eng., 2019, vol. 7, pp. 18133–41.

    Article  CAS  Google Scholar 

  9. H.Y. Li, C.J. Wang, Y.H. Yuan, Y. Guo, and J. Diao: J. Clean. Prod., 2020, vol. 260, p. 121091.

    Article  CAS  Google Scholar 

  10. Z.H. Wang, S.L. Zheng, S.N. Wang, B. Liu, D.W. Wang, H. Du, and Y. Zhang: Trans. Nonferrous Met. Soc. China., 2014, vol. 24, pp. 1273–88.

    Article  CAS  Google Scholar 

  11. Y. Guo, H.Y. Li, J. Cheng, S. Shen, J. Diao, and B. Xie: Sep. Purif. Technol., 2021, vol. 263, p. 118396.

    Article  CAS  Google Scholar 

  12. G.Q. Zhang, D.M. Luo, C.H. Deng, L. Lv, B. Liang, and C. Li: J. Alloys Compd., 2018, vol. 742, pp. 504–11.

    Article  CAS  Google Scholar 

  13. T. Jiang, J. Wen, M. Zhou, and X.X. Xue: J. Alloys. Compd., 2018, vol. 742, pp. 402–12.

    Article  CAS  Google Scholar 

  14. G. Wang, J. Diao, L. Liu, M. Li, H.Y. Li, and G. Li: J. Clean. Prod., 2019, vol. 237.

    Article  CAS  Google Scholar 

  15. H. Liu, H. Du, D.W. Wang, S.N. Wang, S.L. Zheng, and Y. Zhang: Trans. Nonferrous Met. Soc. China., 2013, vol. 23, pp. 1489–1500.

    Article  CAS  Google Scholar 

  16. B. Liu, H. Du, S.N. Wang, Y. Zhang, S.L. Zheng, L.J. Li, and D.H. Chen: AIChE J., 2013, vol. 59, pp. 541–52.

    Article  CAS  Google Scholar 

  17. Y. Guo, H.Y. Li, S. Shen, J. Cheng, J. Diao, and B. Xie: J. Hazard. Mater., 2021, vol. 405, p. 124669.

    Article  CAS  Google Scholar 

  18. S. Sampath, S. Sali, and N.C. Jayadevan: Thermochim. Acta., 1990, vol. 159, pp. 327–35.

    Article  CAS  Google Scholar 

  19. S.C. Jagupilla, W. Mahmoud, and H.M. Deok: Chemo-sphere., 2015, vol. 136, pp. 95–101.

    Article  CAS  Google Scholar 

  20. S. Dey and A.K. Paul: Chemosphere., 2016, vol. 156, pp. 69–75.

    Article  CAS  Google Scholar 

  21. B. Zhang, C.J. Liu, Z.Z. Liu, Z.Q. Li, and M.F. Jiang: Process Saf. Environ. Prot., 2019, vol. 128, pp. 362–71.

    Article  CAS  Google Scholar 

  22. J. Ma, G.Q. Fu, W. Li, and M.Y. Zhu: Int. J. Miner Metall. Mater., 2020, vol. 27, pp. 28–36.

    Google Scholar 

  23. Z.Y. Cai, B. Song, L.F. Li, Z. Zhen, and X.K. Cui: Met., 2019, vol. 9, pp. 1–9.

    Google Scholar 

  24. W.Q. Wang, Y.G. Zhu, S.Q. Zhang, J. Deng, Y. Huang, and W. Yan: Miner., 2017, vol. 7, p. 134.

    Article  CAS  Google Scholar 

  25. C. Yin, S. Zhang, X. Yang, W.N. Yuan, W.Z. Yu, L.Y. Wen, T. Li, and C.G. Bai: Metall. Mater. Trans. B., 2021, vol. 52, pp. 4096–4108.

    Article  CAS  Google Scholar 

  26. S. Saleem and G.G. Roy: Metall. Mater. Trans. B., 2020, vol. 51, pp. 2735–55.

    Article  Google Scholar 

  27. Z. Dong, J. Zhang, and B. Yan: Metall. Mater. Trans. B., 2021, vol. 52, pp. 3961–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support to this project is provided by National Natural Science Foundation of China (Grant Nos. 52174383; 51774087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifang Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, R., Liu, C. et al. Self-digestion of Cr-Bearing Vanadium Slag Processing Residue via Hot Metal Pre-treatment in Steelmaking Process. Metall Mater Trans B 53, 1183–1195 (2022). https://doi.org/10.1007/s11663-022-02430-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02430-8

Navigation