Skip to main content
Log in

Selective Separation of Tellurium and Copper from Crude Selenium by Pre-oxidation and Vacuum Distillation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The removal of Te and Cu was the key point during the selenium purification process. Experimental results found that the volatile decomposition and volatilization behavior of Cu–Se compounds and Te would result in a high content of Cu and Te in selenium. Based on Eh-pH of the Se–Te–Cu–H2O system, a removal route of impurities Te and Cu in crude selenium, pre-oxidation and vacuum distillation process was presented, and their removal mechanism was investigated. ICP-OES, EPMA, XRD, and SEM were employed to analyze the behavior of impurities in materials and samples. The results of pre-oxidation experiments showed CuSe and CuTe in crude selenium were oxidized to CuSeO3 and tellurium dioxide during the pre-oxidation stage, which effectively refrained volatilization of element Cu and Te. Consequently, a selenium product of 99.98 pct purity with 24.19 ppm Te and 5 ppm Cu was obtained in the following vacuum distillation. The overall process would be a desirable industrial purification of selenium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. Russell: Nat. Chem., 2011, vol. 3, p. 570.

    Article  Google Scholar 

  2. S.C. Chen, S.L. Zang: Central South University Press, 2018.

  3. W.D. Wang and L. Wang: China Mater. Sci. Technol. Equip., 2007, vol. 4, pp. 8–11.

    Google Scholar 

  4. Z. Zhao-Karger, X.M. Lin, C.B. Minella, D. Wang, T. Diemant, R.J. Behm, and M. Fichtner: J. Power Sources., 2016, vol. 32, pp. 213–19.

    Article  Google Scholar 

  5. S. Chaudhary, A. Umar, and S.K. Mehta: Prog. Mater Sci., 2016, vol. 8, pp. 270–329.

    Article  Google Scholar 

  6. J. Posada, M. Jubault, and A. Bousquet: Prog. Photovoltaics Res. Appl., 2018, vol. 26, pp. 24–37.

    Article  CAS  Google Scholar 

  7. G. Belev and S.O. Kasap: J. Non-Cryst. Solids., 2004, vol. 345–346, pp. 484–88.

    Article  Google Scholar 

  8. G.Z. Zha, Y.K. Wang, M.Q. Cheng, D.X. Huang, W.L. Jiang, B.Q. Xu, and B. Yang: J. Market. Res., 2020, vol. 9, pp. 2926–33.

    CAS  Google Scholar 

  9. H. Wu, Z.C. Li, and H. Gu: Mater. Res. Appl., 2010, vol. 4, pp. 522–25.

    CAS  Google Scholar 

  10. F.Y. Zhang, Y.J. Zheng, and G.M. Peng: Trans. Nonferr. Met. Soc. China., 2017, vol. 27(4), pp. 917–24.

    Article  CAS  Google Scholar 

  11. P. Ea, R.K. Ron, and G.R. Haugen: Int. J. Hydrogen Energy., 1981, vol. 6, pp. 509–19.

    Article  Google Scholar 

  12. C.H. Su and Y.G. Sha: J. Cryst. Growth., 1998, vol. 187, pp. 569–72.

    Article  CAS  Google Scholar 

  13. A. Burger, D.O. Henderson, S.H. Morgan, and J. Feng: J. Cryst. Growth., 1990, vol. 106, pp. 34–37.

    Article  CAS  Google Scholar 

  14. Q.S. Mei, G.Z. Zha, D.C. Liu, B. Yang, and W.L. Jiang: J. Kunming Univ. Sci. Technol., 2016, vol. 43, pp. 14–21.

    Google Scholar 

  15. B. Yang, G.Z. Zha, W. Hartley, X.F. Kong, D.C. Liu, B.Q. Xu, W.L. Jiang, and X.Y. Guo: J. Clean. Prod., 2019, vol. 219, pp. 110–16.

    Article  CAS  Google Scholar 

  16. M.R. Chowdhury and S.K. Shyamal: Hydrometallurgy., 1993, vol. 32, pp. 189–200.

    Article  CAS  Google Scholar 

  17. V. Lenher and D.P. Smith: Ind. Eng. Chem., 2002, vol. 16, pp. 837–38.

    Article  Google Scholar 

  18. I.I. Stewart and A. Chow: Talanta., 1993, vol. 40, p. 1345.

    Article  CAS  Google Scholar 

  19. Y. Zhou and K. Qiu: J. Hazard. Mater., 2010, vol. 175, p. 823.

    Article  CAS  Google Scholar 

  20. D. Lin and K. Qiu: Environ. Sci. Technol., 2011, vol. 45, pp. 3361–66.

    Article  CAS  Google Scholar 

  21. H.L. Li, X.Y. Wu, M.X. Wang, J. Wang, and S.K. Wu: Sep. Purif. Technol., 2014, vol. 138, pp. 41–46.

    Article  CAS  Google Scholar 

  22. W.L. Jiang, Y. Deng, B. Yang, D.C. Liu, Y.N. Dai, and B.Q. Xu: Rare Met., 2013, vol. 32(06), pp. 627–31. https://doi.org/10.1007/s12598-013-0169-z.

    Article  CAS  Google Scholar 

  23. L. Zhan and Z. Xu: Environ. Sci. Technol., 2008, vol. 42, pp. 7676–81.

    Article  CAS  Google Scholar 

  24. G. Teeter: Thin Solid Films., 2007, vol. 515, pp. 7886–91.

    Article  CAS  Google Scholar 

  25. G.Z. Zha, B. Yang, H. Luo, D.X. Huang, W.L. Jiang, B.Q. Xu, and D.C. Liu: Sep. Purif. Technol., 2021, vol. 266, p. 118536.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (U1902221); Plan of Yunling Scholars Project of Yunnan Province; the Scientist Studio of Yunnan Province; the Leading Talents of Industrial Technology in Ten Thousand Talents Plan of Yunnan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoqiang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Jiang, W., Xiong, H. et al. Selective Separation of Tellurium and Copper from Crude Selenium by Pre-oxidation and Vacuum Distillation. Metall Mater Trans B 53, 1173–1182 (2022). https://doi.org/10.1007/s11663-022-02428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02428-2

Navigation