Skip to main content
Log in

Characteristics and Evolution Behavior of Non-metallic Inclusions in a Novel Ni–W–Co Heavy-Density Alloy Manufactured by VIM/VAR

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Casting and wrought (C&W) metallurgical technology is an effective strategy to fabricate large-sized heavy-density alloy to reduce costs and improve densification, but inevitably limited by the inclusionary cleanliness. In this work, a recently developed Ni–W–Co heavy-density alloy was prepared by industrial vacuum induction melting (VIM) followed by a vacuum arc remelting (VAR) process. The characteristics and evolution behavior of non-metallic inclusions during the melting process were investigated as well. Results demonstrated that the heavy-density alloy prepared by VIM/VAR exhibited considerable process feasibility and cleanliness. The total impurity (O, N, S) content decreased from 130 to 19 ppm because of vacuum carbon pre-deoxidation, followed by calcium deep deoxidation and desulfurization. The actual composition of the non-metallic inclusion was determined and mainly classified into five types: MgO–Al2O3, CaO–MgO–Al2O3, CaO–MgO–Al2O3–SiO2, CaO–MgO–Al2O3–(CaS), and CaO–MgO–Al2O3–SiO2–(CaS), wherein MgO–Al2O3 were the primary inclusions that presented the dominant proportion with small size of ≤ 2 μm and mainly attributed to the erosion and decomposition of crucible refractories. Minor calcium addition triggered distinct modification from small-sized particle MgO–Al2O3 dominated inclusions to large–sized dual-phase CaO–MgO–Al2O3 inclusions. Suggestions about the control of contamination impurities and non-metallic inclusions in Ni–W–Co alloy were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. U. Ravi Kiran, A. Panchal, M. Sankaranarayana, and T.K. Nandy: Int. J. Refract. Met. Hard Mater., 2013, vol. 37, pp. 1–11.

    Article  Google Scholar 

  2. X. Gong, J.L. Fan, and F. Ding: Mater. Sci. Eng. A., 2015, vol. 646, pp. 315–21.

    Article  CAS  Google Scholar 

  3. U. Ravi Kiran, G. Prabhu, and T.K. Nandy: Mater. Today: Proc., 2020, vol. 26, pp. 1631–37.

    CAS  Google Scholar 

  4. P. Skoczylas, Z. Gulbinowicz, and O. Goroch: Mater., 2020, vol. 13, p. 4965.

    Article  CAS  Google Scholar 

  5. J. Das, G. Appa Rao, and S.K. Pabi: Mater. Sci. Eng. A., 2010, vol. 527, pp. 7841–47.

    Article  Google Scholar 

  6. J. Das, G.A. Rao, S.K. Pabi, M. Sankaranarayana, and B. Sarma: Mater. Sci. Eng. A., 2011, vol. 528, pp. 6235–47.

    Article  CAS  Google Scholar 

  7. O. Dinçer, M. Kaan Pehlivanoğlu, N.K. Çalişkan, İ Karakaya, and A. Kalkanli: Int. J. Refract. Met. Hard Mater., 2015, vol. 50, pp. 106–12.

    Article  Google Scholar 

  8. A. Panchal and T.K. Nandy: Mater. Sci. Eng. A., 2018, vol. 733, pp. 374–84.

    Article  CAS  Google Scholar 

  9. A. Iveković, M.L. Montero-Sistiaga, K. Vanmeensel, J.P. Kruth, and J. Vleugels: Int. J. Refract. Met. Hard Mater., 2019, vol. 82, pp. 23–30.

    Article  Google Scholar 

  10. F.H. Ellinger and W.P. Sykes: Trans. ASM., 1940, vol. 28, pp. 619–45.

    CAS  Google Scholar 

  11. D.V. Edmonds and P.N. Jones: Metall. Mater. Trans. A., 1979, vol. 10, pp. 289–95.

    Article  Google Scholar 

  12. U. RaviKiran, A. Panchal, M. Sankaranarayana, and T.K. Nandy: Int. J. Refract. Met. Hard Mater., 2013, vol. 37, pp. 1–11.

    Article  Google Scholar 

  13. R.L. Woodward, I.G. McDonald, and A. Gunner: Mater. Sci. Lett., 1986, vol. 5, pp. 413–14.

    Article  CAS  Google Scholar 

  14. A.S. Rao, M.K. Mohan, and A.K. Singh: Mater. Today: Proc., 2018, vol. 5, pp. 3587–94.

    Google Scholar 

  15. A.S. Rao, P. Manda, M.K. Mohan, and A.K. Singh: Vac., 2018, vol. 155, pp. 169–77.

    Article  CAS  Google Scholar 

  16. A.S. Rao, P. Manda, M.K. Mohan, T.K. Nandy, and A.K. Singh: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 1140–51.

    Article  Google Scholar 

  17. N. Choi, K.R. Lim, Y.S. Na, U. Glatzel, and J.H. Park: J. Alloys Compd., 2018, vol. 763, pp. 546–57.

    Article  CAS  Google Scholar 

  18. E.J. Kautz, S. Shahrezaei, M. Athon, M. Frank, K.A. Schemer, A. Soulami, C. Lavender, V.V. Joshi, and A. Devaraj: J. Nucl. Mater., 2021, vol. 554, p. 152949.

    Article  CAS  Google Scholar 

  19. L.B. Ekbom: Int. J. Refract. Met. Hard Mater., 1991, vol. 10, pp. 155–59.

    Article  CAS  Google Scholar 

  20. C. Lea, B.C. Muddle, and D.V. Edmonds: Metall. Mater. Trans. A., 1983, vol. 14A, pp. 667–77.

    Article  Google Scholar 

  21. H. Danninger, W. Pisan, G. Jangg, and B. Lux: Int. J. Refract. Met. Hard Mater., 1986, vol. 5, pp. 144–52.

    CAS  Google Scholar 

  22. S.F. Yang, Q.Q. Wang, L.F. Zhang, J.S. Li, and K. Peaslee: Metall. Mater. Trans. B., 2012, vol. 43B, pp. 731–50.

    Article  Google Scholar 

  23. I. Ganesh, S. Bhattacharjee, B.P. Saha, R. Johnson, K. Rajeshwari, R. Sengupta, M.V. Ramana Rao, and Y.R. Mahajan: Ceram. Int., 2002, vol. 28, pp. 245–53.

    Article  CAS  Google Scholar 

  24. S. Tong, J. Zhao, Y. Zhang, Q. Cui, R. Wang, and Y. Li: Ceram. Int., 2020, vol. 46, pp. 10089–95.

    Article  CAS  Google Scholar 

  25. P. Zhao, L. Zheng, S.F. Yang, W. Liu, J.S. Li, S.L. Yang, and Y.F. Chen: J. Mater. Res. Technol., 2021, vol. 13, pp. 2459–68.

    Article  CAS  Google Scholar 

  26. I. Hiroyasu, H. Mitsutaka, and B.Y. Shiro: ISIJ Int., 1998, vol. 84, pp. 85–90.

    Google Scholar 

  27. K. YoungJo, L. Fan, M. Kazuki, and S. Du: Steel Res. Int., 2006, vol. 77, pp. 785–92.

    Article  Google Scholar 

  28. N. Verma, P.C. Pistorius, R.J. Fruehan, W. Noh, and M. Potter: Mater. Sci. Technol. Proc., 2009, vol. 2, p. 53.

    Google Scholar 

  29. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333–46.

    Article  CAS  Google Scholar 

  30. J.H. Park and H. Todoroki: J. Iron Steel Res. Int., 2011, vol. 18, pp. 320–30.

    Google Scholar 

  31. N. Verma, P.C. Pistorius, and R.J. Fruehan: AISTech-Iron Steel Technol. Conf. Proc., Indianapolis, IN, 2011, pp. 607–15.

  32. Y.H. Sun, Y.N. Zeng, R. Xu, and K.K. Cai: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 1068–76.

    Article  CAS  Google Scholar 

  33. G.J. Chen, S.P. He, Y.T. Guo, B.Y. Shen, S. Zhao, and Q. Wang: J. Iron Steel Res. Int., 2015, vol. 22, pp. 590–97.

    Article  Google Scholar 

  34. D. Kumar and P.C. Pistorius: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 163–77.

    Article  Google Scholar 

  35. G.K. Sigworth, J.F. Elliott, G. Vaughn, and G.H. Geiger: Can. Metall. Q., 1977, vol. 16, pp. 104–10.

    Article  CAS  Google Scholar 

  36. A.A. Sisev, S.N. Paderin, and K.V. Troyanov: Russ. Metall., 2015, vol. 6, pp. 469–73.

    Article  Google Scholar 

  37. Y. Tabatabaei, S. Kenneth, A.I. Coley, and Gordon, and S. Stanley,: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 2744–56.

    Article  Google Scholar 

  38. S.F. Yang, J.S. Li, L.F. Zhang, K. Peaslee, and Z.F. Wang: J. Iron Steel Res. Int., 2010, vol. 17, pp. 1–6.

    Article  Google Scholar 

  39. S.F. Yang, J.S. Li, Z.F. Wang, J. Li, and L. Lin: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 18–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51874103 and 51974020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shufeng Yang or Lei Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhao, P., Yang, S. et al. Characteristics and Evolution Behavior of Non-metallic Inclusions in a Novel Ni–W–Co Heavy-Density Alloy Manufactured by VIM/VAR. Metall Mater Trans B 53, 760–769 (2022). https://doi.org/10.1007/s11663-021-02413-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02413-1

Navigation