Skip to main content
Log in

Carburization of Manganese Oxide Sources by Natural Gas

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Carburization of Comilog ore, pure MnO powder, and MnO pellet by natural gas was studied by experimental work. XRD, SEM-EDS, and thermogravimetric techniques were used for characterization and reduction behavior analysis. It was found that manganese carbide is formed through direct carburization by methane without methane cracking, and the process was governed by a diffusion-controlled reaction. Even low quantities of some phases in the manganese sources could affect the reduction process adversely. Although increase in temperature intensified the reduction severity, the formation of manganese silicate network at high temperatures hindered the reduction progress of Comilog ore; the best carburization results were achieved at 1100 °C with 24 pct manganese carbide formation. The detrimental effect of aluminates on the gaseous reduction was through lowering the melting temperature of manganese silicates. However, gaseous reduction by methane was adversely affected more by a non-reducible (Mn,Ca)O phase evolved during the pelletizing process on the pore walls rather than by sintering and formation of manganese silicate network. Although neither sintering nor non-reducible phase on the pore walls was observed in the reduction of MnO powder, no complete carburization was occurred. Soot formation and no gas access to the particle surface were recognized as the signs of blocked reduction progress.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. S.E. Olsen, M. Tangstad, and T. Lindstad: Production of Manganese Ferroalloys, Tapir Academic Press, Trondheim, 2007.

    Google Scholar 

  2. G. Akdogan and R.H. Eric: Metall. Mater. Trans. B., 1995, vol. 26B(1), pp. 13–24.

    Article  CAS  Google Scholar 

  3. K. Berg and S. Olsen: Metall. Mater. Trans. B., 2000, vol. 31B(3), pp. 477–90.

    Article  CAS  Google Scholar 

  4. R. Kononov, O. Ostrovski, and S. Ganguly: Metall. Mater. Trans. B., 2008, vol. 39B(5), pp. 662–8.

    Article  CAS  Google Scholar 

  5. A. Cheraghi, H. Yoozbashizadeh, and J. Safarian: Miner. Process. Extr. Metall. Rev., 2020, vol. 41(3), pp. 198–215.

    Article  CAS  Google Scholar 

  6. N. Anacleto, O. Ostrovski, and S. Ganguly: ISIJ Int., 2004, vol. 44(10), pp. 1615–22.

    Article  CAS  Google Scholar 

  7. N. Anacleto, O. Ostrovski, and S. Ganguly: ISIJ Int., 2004, vol. 44(9), pp. 1480–7.

    Article  CAS  Google Scholar 

  8. A. Bhalla and R.H. Eric: Infacon XIV., 2015, vol. 1, pp. 461–9.

    Google Scholar 

  9. K. Ohla and H. Grabke: Mater. Corros., 1982, vol. 33(6), pp. 341–6.

    Article  CAS  Google Scholar 

  10. Aripin H, Priatna E, Busaeri N, Hiron N, Sabchevski S: IOP Conference Series: Materials Science and Engineering, 2019, pp. 012036.

  11. B. Liu, Y. Zhang, Z. Su, Z. Peng, G. Li, and T. Jiang: JOM., 2017, vol. 69(9), pp. 1669–75.

    Article  CAS  Google Scholar 

  12. T. Zhang and M.D. Amiridis: Appl. Catal. A., 1998, vol. 167(2), pp. 161–72.

    Article  CAS  Google Scholar 

  13. H. Dalaker and P. Tetlie: Celebrating the Megascale, Springer, Cham, 2014, pp. 537–46.

    Google Scholar 

  14. O. Ostrovski and G. Zhang: AIChE J., 2006, vol. 52(1), pp. 300–10.

    Article  CAS  Google Scholar 

  15. Ostrovski O, Yastreboff M, Johnston RF, Anacleto N, Ganguly S, inventors; Unisearch Limited, Sydney (AU); Temco Pty LTD’ Bnsbane (AU), assignee. Solid state reduction of oxides. US2004.

  16. O. Ostrovski: Celebrating the Megascale, Springer, Cham, 2014, pp. 529–36.

    Google Scholar 

  17. K.S. Go, S.R. Son, S.D. Kim, K.S. Kang, and C.S. Park: Int. J. Hydrogen Energy., 2009, vol. 34(3), pp. 1301–9.

    Article  CAS  Google Scholar 

  18. M. Rydén and A. Lyngfelt: Int. J. Hydrogen Energy., 2006, vol. 31(10), pp. 1271–83.

    Article  Google Scholar 

  19. Elliott R, Barati M: Extraction 2018, Springer, 2018, pp. 1129–40.

  20. B. Liu, Y. Zhang, Z. Su, M. Lu, G. Li, and T. Jiang: Powder Technol., 2018, vol. 325, pp. 271–9.

    Article  CAS  Google Scholar 

  21. A. Cheraghi, H. Yoozbashizadeh, and J. Safarian: INFACON XV., 2018, vol. 1, pp. 157–67.

    Google Scholar 

  22. A. Cheraghi, H. Yoozbashizadeh, E. Ringdalen, and J. Safarian: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1566–80.

    Article  Google Scholar 

  23. E. Turkdogan and J. Vinters: Metall. Mater. Trans. B., 1971, vol. 2B(11), pp. 3175–88.

    Article  Google Scholar 

  24. Y. Gao, M. Olivas-Martinez, H. Sohn, H.G. Kim, and C.W. Kim: Metall. Mater. Trans. B., 2012, vol. 43B(6), pp. 1465–75.

    Article  Google Scholar 

  25. M. Tangstad, P. Calvert, H. Brun, and A. Lindseth: Infacon X., 2004, vol. 1, pp. 213–22.

    Google Scholar 

  26. Y.-B. Kang, I.-H. Jung, S.A. Decterov, A.D. Pelton, and H.-G. Lee: ISIJ Int., 2004, vol. 44(6), pp. 965–74.

    Article  CAS  Google Scholar 

  27. E. Serris, L. Favergeon, M. Pijolat, M. Soustelle, P. Nortier, R. Gärtner, et al.: Cem. Concr. Res., 2011, vol. 41(10), pp. 1078–84.

    Article  CAS  Google Scholar 

  28. A. Cheraghi, H. Becker, H. Eftekhari, H. Yoozbashizadeh, and J. Safarian: Mater. Today Commun., 2020, vol. 25, p. 101382.

    Article  CAS  Google Scholar 

  29. M. Wilson, M. Berrow, and W. McHardy: Miner. Mag., 1970, vol. 37(289), pp. 618–23.

    Article  CAS  Google Scholar 

  30. B. Sorensen, S. Gaal, E. Ringdalen, M. Tangstad, R. Kononov, and O. Ostrovski: Int. J. Miner. Process., 2010, vol. 94(3), pp. 101–10.

    Article  CAS  Google Scholar 

  31. Y.-B. Kang, H.S. Kim, J. Zhang, and H.-G. Lee: J. Phys. Chem. Solids., 2005, vol. 66(2–4), pp. 219–25.

    Article  CAS  Google Scholar 

  32. D. Friedmann, A. Pophanken, and B. Friedrich: Journal of Sustainable Metallurgy., 2017, vol. 3(2), pp. 219–29.

    Article  Google Scholar 

  33. R. Snow: J. Am. Ceram. Soc., 1943, vol. 26(1), pp. 11–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study has been done in the laboratories at NTNU which is acknowledged. The current work has been supported by the Research Domain 2 in SFI-Metal production; a Norwegian Centre for Research-Based Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Cheraghi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 17, 2021; accepted November 20, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheraghi, A., Yoozbashizadeh, H. & Safarian, J. Carburization of Manganese Oxide Sources by Natural Gas. Metall Mater Trans B 53, 744–759 (2022). https://doi.org/10.1007/s11663-021-02398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02398-x

Navigation