Abstract
The effects of halophilic bacteria (Halobacillus sp. and Marinobacter sp.) on pyrite and chalcopyrite surface oxidation in artificial seawater are studied by electrochemical impedance spectroscopy (EIS) in conjunction with X-ray diffraction (XRD) and cyclic voltammetry analysis (CV), in order to explain the influence of these microorganisms on the minerals floatability. EIS analyses on pyrite electrodes suggest that biomaterial from both bacteria adheres to the mineral surface, which is reinforced by CV experiments as capacitive currents are promoted by both bacteria. Additionally, XRD analyses of pyrite samples after immersion in artificial seawater with and without bacteria indicate the formation of hematite on the mineral surface in the presence of Halobacillus sp., which together with the adherence of biomaterial could promote the depression of pyrite during flotation. On the other hand, EIS and CV analyses on chalcopyrite electrodes suggest that the adherence of Halobacillus sp. and Marinobacter sp. to the surface of the mineral have no significant effects on the kinetics of the chalcopyrite oxidation processes. These results together with XRD analyses of the chalcopyrite samples after immersion in artificial seawater with and without bacteria suggest that superficial sulphur might have a stronger influence on chalcopyrite flotability than the presence of bacteria.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
All the potentials presented in this work are referred to this electrode, unless noted otherwise.
References
1 C. Owusu, S. Brito, W. Skinner, J. Addai-mensah, and M. Zanin: Miner. Eng., 2014, vol. 55, pp. 87–95.
X.-H. Wang and K.S. Ericorssberg: Int. J. Miner. Process., 1991, vol. 33, pp. 275–90.
3 S.K. Behera and A.F. Mulaba-Bafubiandi: Miner. Eng., 2019, vol. 131, pp. 336–41.
4 R.I. Jeldres, L. Forbes, and L.A. Cisternas: Miner. Process. Extr. Metall. Rev., 2016, vol. 37, pp. 369–84.
5 R.M. Pytkowicz and E. Atlas: Limnol. Oceanogr., 1975, vol. 20, pp. 222–9.
6 P. Patra and K. Natarajan: Int. J. Miner. Process., 2008, vol. 88, pp. 53–8.
7 S.K. Behera and A.F. Mulaba-Bafubiandi: Miner. Process. Extr. Metall. Rev., 2017, vol. 38, pp. 96–105.
F. Sanartín, W. Kracht, and T. Vargas: Miner. Eng., 2018, vol. 117, pp. 127–31.
G. Luque Consuegra, S. Kutschke, M. Rudolph, and K. Pollmann: Miner. Eng., 2020, vol. 145, art. no. 106062.
10 D.R. Kester, I.W. Duedall, D.N. Connors, and R.M. Pytkowicz: Limnol. Oceanogr., 1967, vol. 12, pp. 176–9.
11 C.Y. Chen and E.G. Durbin: Mar. Ecol. Prog. Ser., 1994, vol. 109, pp. 83–94.
12 S. Gao, Q. Sun, Y. Tao, X. Wang, W. Li, L. Huan, M. Wu, and G. Wang: J. Exp. Mar. Bio. Ecol., 2016, vol. 475, pp. 144–53.
13 I.S. Semesi, J. Kangwe, and M. Björk: Estuar. Coast. Shelf Sci., 2009, vol. 84, pp. 337–41.
14 Y.M. Bar-On, R. Phillips, and R. Milo: Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, pp. 6506–11.
15 E.G. Biesta-Peters, M.W. Reij, H. Joosten, L.G.M. Gorris, and M.H. Zwietering: Appl. Environ. Microbiol., 2010, vol. 76, pp. 1399–405.
16 E. Marsili, J.B. Rollefson, D.B. Baron, R.M. Hozalski, and D.R. Bond: Appl. Environ. Microbiol., 2008, vol. 74, pp. 7329–37.
17 C.L. Caldeira, V.S.T. Ciminelli, A. Dias, and K. Osseo-Asare: Int. J. Miner. Process., 2003, vol. 72, pp. 373–86.
18 D. Bevilaqua, A.L.L.C. Leite, O. Garcia, and O.H. Tuovinen: Process Biochem., 2002, vol. 38, pp. 587–92.
19 E. Ahlberg, K.S.E. Forssberg, and X. Wang: J. Appl. Electrochem., 1990, vol. 20, pp. 1033–9.
20 J. Kang, T. Kim, Y. Tak, J.H. Lee, and J. Yoon: J. Ind. Eng. Chem., 2012, vol. 18, pp. 800–807.
21 E.C. Theil, T. Tosha, and R.K. Behera: Acc. Chem. Res., 2016, vol. 49, pp. 784–91.
22 D. Penas, A.S. Pereira, and P. Tavares: Angew. Chemie Int. Ed., 2019, vol. 58, pp. 1013–8.
23 W.H. Mulder, J.H. Sluyters, T. Pajkossy, and L. Nyikos: J. Electroanal. Chem., 1990, vol. 285, pp. 103–15.
24 S.Y. Shi, Z.H. Fang, and J.R. Ni: Electrochem. Commun., 2005, vol. 7, pp. 1177–82.
25 S. Deng and G. Gu: Electrochim. Acta, 2018, vol. 287, pp. 106–14.
M.C. Romero, G. Ramos, I. González, and F. Ramírez: Appl. Biochem. Biotechnol., 10.1007/s12010-020-03386-8 (2010).
27 D. Bevilaqua, I. Diéz-Perez, C.S. Fugivara, F. Sanz, A. V. Benedetti, and O. Garcia: Bioelectrochemistry, 2004, vol. 64, pp. 79–84.
28 B. Boukamp: Solid State Ionics, 1993, vol. 62, pp. 131–41.
29 M. Schönleber and D. Klotz: Electrochim. Acta, 2014, vol. 131, pp. 20–27.
30 C. Heidel, M. Tichomirowa, and M. Junghans: Chem. Geol., 2013, vol. 342, pp. 29–43.
31 R.D. Knight, S. Roberts, and M.J. Cooper: Appl. Geochemistry, 2018, vol. 90, pp. 63–74.
32 R. V. Nicholson, R.W. Gillham, and E.J. Reardon: Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 1077–85.
33 K. Shrimali, V. Atluri, Y. Wang, S. Bacchuwar, X. Wang, and J.D. Miller: J. Colloid Interface Sci., 2018, vol. 524, pp. 337–49.
34 P. Velásquez, H. Gómez, D. Leinen, and J.R. Ramos-Barrado: Colloids Surfaces A Physicochem. Eng. Asp., 1998, vol. 140, pp. 177–82.
35 J.R. Gardner and R. Woods: Int. J. Miner. Process., 1979, vol. 6, pp. 1–16.
36 W. Tolley, D. Kotlyar, and R.. Van Wagoner: Miner. Eng., 1996, vol. 9, pp. 603–37.
Acknowledgments
The authors are grateful for the financial support from the CONICYT-BMBF international cooperation project BMBF150026: “Bioflotation of Sulfides in Seawater: Evaluation of Potential Application of Biocomponents in Copper Ore Processing with Seawater (BS2)” and the CONICYT-PIA project AFB180004. Also, the authors thank Dr. Götz Haferburg from the Technical University Bergakademie Freiberg (TUBAF) for his collaboration on the isolation and initial characterization of the bacteria strains.
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Manuscript submitted February 22, 2021; accepted June 19, 2021.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
González-Poggini, S., Luque Consuegra, G., Kracht, W. et al. Electrochemical Characterization of Sulphide Minerals–Halophilic Bacteria Surface Interaction for Bioflotation Applications. Metall Mater Trans B 52, 3373–3382 (2021). https://doi.org/10.1007/s11663-021-02267-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11663-021-02267-7