Abstract
To reduce the environmental impact during purification of molten aluminum, an environmentally friendly flux is being considered as a potential replacement for the highly toxic chlorine-containing gas currently used. However, the reactivity of the flux is much lower relative to the gases, resulting in low-efficiency purification. Here, a new approach using water modeling was implemented to investigate mass transfer between molten aluminum and the flux during rotary flux injection. Silicon oil, air, and water were used as a model flux, gas, and aluminum melt, respectively. The oil and air were injected into the water bath through the shaft of a rotary impeller. Mass transfer between the oil and water was enhanced with increasing impeller rotation rate. The major enhancement mechanism was entrainment and dispersion of oil droplets from the oil layer floating on the water surface. There was a threshold for the impeller rotation rate, which significantly increased the volumetric mass transfer coefficient.
This is a preview of subscription content, access via your institution.










Similar content being viewed by others
References
M.E. Schlesinger: Aluminum recycling. 2nd ed. CRC Press, Boca Raton, 2017.
J.F. Bilodeau, Y. Kocaefe: Light Metals 2001, pp. 1009-1015.
L.I. Kiss, J.F. Bilodeau: Proc. of Conference On Metallurgists 2001, 2001, Toronto.
F. Kerdouss, L. Kiss, P. Proulx, J.F. Bilodeau, and C. Dupuis: Int. J. Chem. Reactor Eng., 2005, vol. 3, p. A35. https://doi.org/10.2202/1542-6580.1217.
V.S. Warke, G. Tryggvason, and M.M. Makhlouf: J. Mater. Process. Technol., 2005, vol. 168, pp. 112–8. https://doi.org/10.1016/j.jmatprotec.2004.10.017.
E. Mancilla, W. Cruz-Méndez, M.A. RamÃrez-Argáez, C. González-Rivera, and G. Ascanio: Can. J. Chem. Eng., 2019, vol. 97, pp. 1729–40. https://doi.org/10.1002/cjce.23432.
G. Gao, M. Wang, D. Shi, and Y. Kang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1997–2005. https://doi.org/10.1007/s11663-019-01607-y.
E.R. Gómez, R. Zenit, C.G. Rivera, G. Trápaga, and M.A. RamÃrez-Argáez: Metall. Mater. Trans. B., 2013, vol. 44B, pp. 423–35. https://doi.org/10.1007/s11663-012-9774-8.
E.R. Gómez, R. Zenit, C.G. Rivera, G. Trápaga, and M.A. RamÃrez-Argáez: Metall. Mater. Trans. B., 2013, vol. 44B, pp. 974–83. https://doi.org/10.1007/s11663-013-9845-5.
E. Mancilla, W. Cruz-Méndez, I.E. Garduño, C. González-Rivera, M.A. RamÃrez-Argáez, and G. Ascanio: Chem. Eng. Res. Des., 2017, vol. 118, pp. 158–65. https://doi.org/10.1016/j.cherd.2016.11.031.
D. Abreu-López, A. Amaro-Villeda, A. Acosta-González, C. González-Rivera, and M.A. RamÃrez-Argáez: Metals., 2017, vol. 7, p. 132. https://doi.org/10.3390/met7040132.
J. Svizelová, M. Tkadlecková, K. Michalek, J. Walek, M. Saternus, J. Pieprzyca, T. Merder: Arch. Metall. Mater., 2019, vol. 64, pp. 659–64.
B.B. Wan, W. Chen, M. Mao, Z. Fu, and D. Zhu: J. Mater. Process. Technol., 2018, vol. 251, pp. 330–42. https://doi.org/10.1016/j.jmatprotec.2017.09.001.
T. Yamamoto, A. Suzuki, S.V. Komarov, and Y. Ishiwata: J. Mater. Process. Technol., 2018, vol. 261, pp. 164–72. https://doi.org/10.1016/j.jmatprotec.2018.06.012.
T. Yamamoto, Y. Fang, S.V. Komarov: Chem. Eng. Sci., 2019a., vol. 197, pp. 26-36. https://doi.org/10.1016/j.ces.2018.12.007
T. Yamamoto and S.V. Komarov: Chem. Eng. Sci., 2019, vol. 207, pp. 1007–16. https://doi.org/10.1016/j.ces.2018.12.007.
M. Hernández-Hernández, J.L. Camacho-MartÃnez, C. González-Rivera, and M.A. RamÃrez-Argáez: J. Mater. Process. Technol., 2016, vol. 236, pp. 1–8. https://doi.org/10.1016/j.jmatprotec.2016.04.031.
D. Abreu-López, A. Dutta, J.L. Camacho-MartÃnez, G. Trápaga-MartÃnez, and M.A. RamÃrez-Argáez: JOM., 2018, vol. 70, pp. 2958–67. https://doi.org/10.1007/s11837-018-3147-y.
D. Shi, Z. Du, A. Wang, G. Gao, and M. Wang: Res. Phys., 2020, vol. 19, 103386. https://doi.org/10.1016/j.rinp.2020.103386.
J. Walek, K. Michalek, M. Tkadleckova, and M. Saternus: Metals., 2021, vol. 11, p. 284. https://doi.org/10.3390/met11020284.
M. Saternus: J. Achiev. Mater. Manuf. Eng., 2012, vol. 55, pp. 285–90. .
J.L. Song, M.R. Jolly, M. Kimata, W. Bujalski, A.W. Nienow: Proc. of Third International Conference on CFD in the Minerals and Process Industries, 2003, Melbourne, Australia, 10-12 December.
W. Bujalski, M. Kimata, N. Nayan, J.L. Song, M.R. Jolly, and A.W. Nienow: Chem. Eng. Technol., 2004, vol. 27, pp. 310–4. https://doi.org/10.1002/ceat.200401982.
F. Chiti, A. Paglianti, and W. Bujalski: Chem. Eng. Res. Des., 2004, vol. 82, pp. 1105–11. https://doi.org/10.1205/cerd.82.9.1105.44156.
T. Yamamoto, K. Kato, S.V. Komarov, Y. Ueno, M. Hayashi, and Y. Ishiwata: J. Mater. Process. Technol., 2018, vol. 259, pp. 409–15. https://doi.org/10.1016/j.jmatprotec.2018.04.025.
M.D. Maniruzzaman and M.M. Makhlouf: Metall. Mater. Trans. B., 2002, vol. 33B, pp. 297–303. https://doi.org/10.1007/s11663-002-0013-6.
V.S. Warke, S. Shankar, and M.M. Makhlouf: J. Mater. Process. Technol., 2005, vol. 168, pp. 119–26. https://doi.org/10.1016/j.jmatprotec.2004.10.016.
O. Mirgaux, D. Ablitzer, E. Waz, and J.P. Bellot: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 363–75. .
S.T. Johansen, S. Graadahl, and T.F. Hagelien: Appl. Math. Model., 2004, vol. 28, pp. 63–77. .
R.R. Bagherpour-Torghabeh and H. Doostmohammadi: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 3456–69. .
T. Yamamoto, Y. Fang, and S.V. Komarov: Chem. Eng. J., 2019, vol. 367, pp. 25–36. https://doi.org/10.1016/j.cej.2019.02.130.
T. Yamamoto, W. Kato, S.V. Komarov, and Y. Ishiwata: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 2547–56. https://doi.org/10.1007/s11663-019-01681-2.
K. Kato, T. Yamamoto, S.V. Komarov, R. Taniguchi, and Y. Ishiwata: Mater. Trans., 2019, vol. 60, pp. 2008–15. https://doi.org/10.2320/matertrans.M2019055.
T. Yamamoto, K. Kato, S.V. Komarov, R. Taniguchi, and Y. Ishiwata: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1836–46. https://doi.org/10.1007/s11663-020-01842-8.
H. Ni, B. Sun, H. Jiang, and W. Ding: Mater. Sci. Eng. A., 2003, vol. 352, pp. 294–9. https://doi.org/10.1016/S0921-5093(02)00900-0.
Y. Ohno: Proc. of International Conference on Aluminum Alloys, 2010, September 5-9, Yokohama, Japan.
K. Nakanishi, Y. Kato, T. Nozaki, and T. Emi: Tetsu-To-Hagané., 1980, vol. 66, pp. 1307–16. https://doi.org/10.2355/tetsutohagane1955.66.9_1307.
M. MartÃn, M. Rendueles, and M. DÃaz: Chem. Eng. Res. Des., 2005, vol. 83, pp. 1076–84. https://doi.org/10.1205/cherd.02156.
S. Ghorai, G.G. Roy, and S.K. Roy: ISIJ Int., 2004, vol. 44, pp. 37–42. https://doi.org/10.2355/isijinternational.44.37.
S.K., Ajmani, A. Chatterjee: Ironmak. Steelmak., 2005, vol. 32, pp. 515-27. https://doi.org/10.1179/174328105X48188
V. Singh, S.N. Lenka, S.K. Ajmani, C. Bhanu, and S. Pathak: ISIJ Int., 2009, vol. 49, pp. 1889–94. https://doi.org/10.2355/isijinternational.49.1889.
J.O. Hinze: AIChE J., 1955, vol. 1, pp. 289–95. https://doi.org/10.1002/aic.690010303.
C.A. Coulaloglou and L.L. Tavlarides: AIChE J., 1976, vol. 22, pp. 289–97. https://doi.org/10.1002/aic.690220211.
S. Nagata: Mixing: principles and applications. Halsted Press, New York, 1975.
A. Busciglio, G. Caputo, and F. Scargiali: Chem. Eng. Sci., 2013, vol. 104, pp. 868–80. https://doi.org/10.1016/j.ces.2013.10.019.
S.S. Deshpande, K.K. Kar, J. Walker, J. Pressler, and W. Su: Chem. Eng. Sci., 2017, vol. 168, pp. 495–506. https://doi.org/10.1016/j.ces.2017.04.002.
W. Ranz and W. Marshall: Chem. Eng. Prog., 1952, vol. 48, pp. 141–6. .
M. Leitner, T. Leitner, A. Schmon, K. Aziz, G. Pottlacher: Metall. Mater. Trans. A, vol. 48A, pp. 3036-3045. http://dx.doi.org/https://doi.org/10.1007/s11661-017-4053-6
R.R. Roy, J. Ye, and Y. Sahai: Mater. Trans., 1997, vol. 38, pp. 566–70. https://doi.org/10.2320/matertrans1989.38.566.
F.A. Guevara, B.B. Mclnteer, and W.E. Wageman: Phys. Fluids., 1969, vol. 12, pp. 2493–505. https://doi.org/10.1063/1.1692386.
A. Silny, T.A. Utigard: Light Metals 1997, pp. 871-78.
R.R. Roy and T.A. Utigard: Metall. Mater. Trans. B., 1998, vol. 29B, pp. 821–7. https://doi.org/10.1007/s11663-998-0141-8.
K. Kovacova and D. Grman: Kovove Mater., 1979, vol. 17, pp. 144–51. .
E. Gamsjäger, J. Svoboda, F.D. Fischer, and M. Rettenmayr: Acta Mater., 2007, vol. 55, pp. 2599–607. https://doi.org/10.1016/j.actamat.2006.12.002.
J.M.P.Q. Delgado: J. Phs. Eqil. Diff., 2007, vol. 28, pp. 427–32. .
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Manuscript submitted April 6, 2021; accepted June 17, 2021.
Rights and permissions
About this article
Cite this article
Yamamoto, T., Takahashi, H., Komarov, S.V. et al. Physical Modeling of Rotary Flux Injection in an Aluminum Melting Furnace. Metall Mater Trans B 52, 3363–3372 (2021). https://doi.org/10.1007/s11663-021-02265-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11663-021-02265-9