Skip to main content
Log in

Simulations of Multiple Grains Growth of Mg–Al Alloy Semisolid Structure by Phase-Field-Lattice Boltzmann Simulation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To study the grain morphology of Mg–Al alloy semisolid structure during the process of mechanical stirring, a multiple grains PF-LBM model (phase-field-lattice Boltzmann model) coupled with a rigid body rotation model was developed. In this study, an orientational field model was introduced to describe the orientation of different grains and it was determined that the growth of multiple grains with different orientations can be computed by only one-phase field function which improves the computing efficiency. The simulation results of the growth of two semisolid grains showed that the growth and coalescence representation can be simulated by the proposed model. Then, multiple grains growth of a Mg–Al alloy semisolid structure was successfully simulated using the developed model and the result is in good agreement with the experimental result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.S. Pan, M.B. Yang, and X.H. Chen, J. Mater. Sci. Technol., 2016, 32, 1211-1221. DOI: 10.1016/j.jmst.2016.07.001

    Article  CAS  Google Scholar 

  2. [2] F. Meng, S. Lv, Q. Yang, P. Qin, J. Zhang, K. Guan, Y. Huang, N. Hort, B. Li, X. Liu, and J. Meng, Alloy. Compd., 2019, vol. 795, pp. 436-445. DOI: 10.1016/j.jallcom.2019.04.346

    Article  CAS  Google Scholar 

  3. [3] M. Modigell and A. Pola, M. Tocci, Metals, 2018, vol. 8, p. 245. DOI: 10.3390/met8040245

    Article  CAS  Google Scholar 

  4. [4] S. Nafisi and R. Ghomashchi, Metals, 2019, vol. 9, p. 526. DOI: 10.3390/met9050526

    Article  Google Scholar 

  5. L.N. Guan, L. Geng, H.W. Zhang, and L.J. Huang, Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. S274-S297. DOI: 10.1016/S1003-6326(11)61590-2

    Article  Google Scholar 

  6. [6] M. Asta, C. Beckermann, and A. Karma, Acta Mater., 2009, vol.57, pp. 941-971. DOI: 10.1016/j.actamat.2008.10.020

    Article  CAS  Google Scholar 

  7. [7] T. Takaki, ISIJ Int., 2014, vol. 54, pp. 437-444. DOI: 10.2355/isijinternational.54.437

    Article  CAS  Google Scholar 

  8. [8] D. Montiel and S. Gurevich, Acta Mater., 2014, vol. 77, pp. 183-190. DOI: 10.1016/j.actamat.2014.05.063

    Article  CAS  Google Scholar 

  9. [9] N. Moelans, B. Blanpain, and P. Wollants, Calphad-Comput. Coupling Ph. Diagrams Thermochem, 2008, vol. 32, pp. 268-294. DOI: 10.1016/j.calphad.2007.11.003

    Article  CAS  Google Scholar 

  10. [10] CK. Aidun and JR. Clausen, Annu. Rev. Fluid Mech., 2010, vol. 42, pp. 439-472. DOI: 10.1146/annurev-fluid-121108-145519

    Article  Google Scholar 

  11. [11] D. Raabe, Model. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. R13-R46. DOI: 10.1088/0965-0393/12/6/R01

    Article  Google Scholar 

  12. [12] S. Sakane, T. Takaki, M. Ohno, Y. Shibuta, T. Shimokawabe, and T. Aoki, J. Cryst. Growth, 2018, vol. 483, pp. 147-155. DOI: 10.1016/j.jcrysgro.2017.11.029

    Article  CAS  Google Scholar 

  13. C. Yang, Q.Y. Xu, and B.C. Liu, Rare Metals, 2020, 39, 147-155. DOI: 10.1007/s12598-019-01292-5

    Article  CAS  Google Scholar 

  14. A. Zhang, J.L. Du, Z.P. Guo, Q.G. Wang, and S..M. Xiong, Metall. Mater. Trans. B 2018, 49, 3603-3615. DOI: 10.1007/s11663-018-1418-1

    Article  CAS  Google Scholar 

  15. [15] WZ. Sun, Y. Xie, R. Yan, SD. Ma, HB. Dong, and T. Jing, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 2019, vol. 50, pp. 2487-2497. DOI: 10.1007/s11663-019-01669-y

    Article  CAS  Google Scholar 

  16. A. Zhang, S.X. Meng, Z.P. Guo, J.L. Du, Q.G. Wang, and S.M. Xiong, Metall. Mater. Trans. B 2019, 50, 1514-1526. DOI: 10.1007/s11663-019-01549-5

    Article  CAS  Google Scholar 

  17. [17] T. Takaki, R. Rojas, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, and T. Aoki, J. Cryst. Growth, 2017, vol. 474, pp. 146-153. DOI: 10.1016/j.jcrysgro.2016.11.099

    Article  CAS  Google Scholar 

  18. [18] R. Rojas, T. Takaki, and M. Ohno, J. Comput. Phys., 2015, vol. 298, pp. 29-40. DOI: 10.1016/j.jcp.2015.05.045

    Article  CAS  Google Scholar 

  19. X.B. Qi, Y. Chen, X.H. Kang, D.Z. Li, and T.Z. Gong, Sci. Rep., 2017, 7, 45770. DOI: 10.1038/srep45770

    Article  Google Scholar 

  20. S.X. Meng, A. Zhang, and Z.P. Guo, Comput. Mater. Sci., 2020, 184, 109784. DOI: 10.1016/j.commatsci.2020.109784

    Article  CAS  Google Scholar 

  21. [21] L. Ratkai, T. Pusztai, and L. Granasy, npj Comput. Mater., 2019, vol. 5, p. 113. DOI: 10.1038/s41524-019-0250-8

    Article  Google Scholar 

  22. [22] S. Sakane, T. Takaki, M. Ohno and Y. Shibuta, Comput. Mater. Sci. 2019, vol. 164, pp. 39-45. DOI: 10.1016/j.commatsci.2019.03.047

    Article  CAS  Google Scholar 

  23. S. Luo, P. Wang, W.L. Wang, and M.Y. Zhu, Metall. Mater. Trans. B 2020, 51, 2268-2284. DOI: 10.1007/s11663-020-01925-6

    Article  CAS  Google Scholar 

  24. [24] T. Takaki, R. Sato, R. Rojas, M. Ohno, and Y. Shibuta, Comput. Mater. Sci., 2018, vol.147, pp. 124-131. DOI: 10.1016/j.commatsci.2018.02.004

    Article  CAS  Google Scholar 

  25. [25] S. Sakane, T. Takaki, M. Ohno, Y. Shibuta, and T. Aoki, Comput. Mater. Sci., 2020, vol.178, p. 109639. DOI: 10.1016/j.commatsci.2020.109639

    Article  CAS  Google Scholar 

  26. X. Zhang,Y. Wang, D.R. Liu, Z.S. Ji, H.Y. Xu, M.L. Hu, and P.X. Cui, J. Cryst. Growth, 2020, 543, 125704. DOI: 10.1016/j.jcrysgro.2020.125704

    Article  CAS  Google Scholar 

  27. T. Suzuki, M. Ode, and S.G. Kim, J. Cryst. Growth, 2002, 237–239, 125–131. DOI: 10.1016/S0022-0248(01)01891-7

    Article  Google Scholar 

  28. [28] JJ. Li, JC. Wang, Q. Xu, and GC. Yang, Acta Mater., 2007, vol. 55, pp. 825-832. DOI: 10.1016/j.actamat.2006.07.044

    Article  CAS  Google Scholar 

  29. [29] C. Beckermanna, H.J. Diepersb, I. Steinbachb, A. Karmac, and X. Tonga, J. Comput. Phys., 1999, vol. 154, pp. 468-496. DOI: 10.1006/jcph.1999.6323

    Article  Google Scholar 

  30. [30] JA. Warren, R. Kobayashi, and AE. Lobovsky, Acta Mater., 2003, vol. 51, pp. 6035-6058. DOI: 10.1016/S1359-6454(03)00388-4

    Article  CAS  Google Scholar 

  31. [31] E. Semma, M. El Ganaoui, and R. Bennacer, Int. J. Therm. Sci., 2008, vol. 47, pp. 201-208. DOI: 10.1016/j.ijthermalsci.2007.02.010

    Article  Google Scholar 

  32. [32] S. Lee, Y. Li, J. Shin, and J. Kim, Comput. Phys. Commun., 2017, Vol. 216, pp. 84-94. DOI: 10.1016/j.cpc.2017.03.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant Nos. 51574100 and 51704087), the Natural Science Foundation of Heilongjiang Province (Grant No. LH2020E083) and the National key research and development program (Grant No. 2019YFB2006500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 25, 2021, accepted April 25, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, Y., Ji, Z. et al. Simulations of Multiple Grains Growth of Mg–Al Alloy Semisolid Structure by Phase-Field-Lattice Boltzmann Simulation. Metall Mater Trans B 52, 2441–2449 (2021). https://doi.org/10.1007/s11663-021-02204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02204-8

Navigation