Skip to main content
Log in

Kinetics of Decarburization and Manganese Loss from Fe–15Mn–1C Alloy by Bubbling of Argon–Oxygen Gas Mixtures

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, the kinetics of decarburization and demanganization of Fe–15Mn–1C alloy by bubbling mixtures of Ar–O2 into the melt at 1823 K was studied. Experiments were conducted at total gas flow rates of 200 and 300 Nml/min and gas mixtures of Ar containing 6.7 to 20 pct O2. Increasing the gas flow rate and oxygen in the gas mixture resulted in higher overall rates of decarburization and demanganization. However, the experiments with the lowest oxygen concentration were the most efficient in terms of oxygen utilization for decarburization. The ratio of manganese loss to decarburization was found to be controlled by the relative mass transport of manganese and carbon in the metal. Based on the estimated mass transfer coefficient for either carbon or manganese, the reaction time for each bubble was estimated to be 0.001 seconds which is about 1 pct of the residence time of the bubble in the liquid. Although the initial competition for oxygen between manganese and carbon was controlled by relative mass transport rates, this work found no evidence that manganese and carbon repartitioned towards the equilibrium over the remaining lifetime of the bubble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. C. De Cooman, K. Chin, and J. Kim: in New Trends and Developments in Automotive System Engineering, InTech, Rijeka, 2011, pp. 101–28.

    Google Scholar 

  2. 2 R. Elliott, K. Coley, S. Mostaghel, and M. Barati: JOM, 2018, vol. 70, pp. 680–90.

    Article  CAS  Google Scholar 

  3. 3 O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141–68.

    Article  CAS  Google Scholar 

  4. POSCO, POSCO Steel Plates, Pohang, South Korea, unpublished research, 2014.

  5. POSCO, New Materials: High Mn Steels, Pohang, South Korea, unpublished research, 2015.

  6. Thyssenkrupp, Precision Steel, Precidur ® X40MnCrAIV 19-2 HY, Product Information for Hot-Rolled Precision Strip Made in Hohenlimburg, Germany, Hohenlimburg, unpublished research, 2019.

  7. W. Dresler: in Steelmaking Conference Proceedings, 1989, pp. 13–20.

  8. D.S. Kozak and L.R. Matricardi.: Iron Steelmak., 1981, vol. 8, pp. 28–31.

  9. 9 T. Germershausen, J. Bader, J. Reichel, U. Gerike, and S.M.S.S. Ag: in The thirteenth International Ferroalloys Congress Efficient technologies in ferroalloy industry, Almaty, Kazakhstan, 2013, pp. 335–46.

  10. 10 T. Ohno and T. Nishida: Tetsu-to-Hagane, 1977, vol. 63, pp. 2094–9.

    Article  CAS  Google Scholar 

  11. 11 R.J. Fruehan: Ironmak. Steelmak., 1976, vol. 3, pp. 153–8.

    CAS  Google Scholar 

  12. 12 N. Andersson, A. Tilliander, L. Jonsson, and P. Jönsson: Steel Res. Int., 2012, vol. 83, pp. 1039–52.

    Article  CAS  Google Scholar 

  13. 13 J. Wei, H. Zhu, Q. Jiang, G. Shi, H. Chi, and H. Wang: ISIJ Int., 2010, vol. 50, pp. 1347–56.

    Article  CAS  Google Scholar 

  14. G.S. Rao and D.G.C. Robertson: in Advanced Processing of Metals And Minerals, The Minerals, Metals & Materials Society (TMS), 2006, pp. 325–42.

  15. 15 T.D. Roy and D.G.C. Robertson: Ironmak. Steelmak., 1978, vol. 5, pp. 198–206.

    Google Scholar 

  16. 16 T.D. Roy, D.G.C. Robertson, and J.C.C. Leach: Ironmak. Steelmak., 1978, vol. 5, pp. 207–10.

    Google Scholar 

  17. 17 J.-H. Wei and D.-P. Zhu: Metall. Mater. Trans. B, 2002, vol. 33, pp. 111–19.

    Article  CAS  Google Scholar 

  18. 18 S. Asai and J. Szekely: Metall. Trans., 1974, vol. 5, pp. 651–7.

    Article  CAS  Google Scholar 

  19. 19 J. Szekely and S. Asai: Metall. Trans., 1974, vol. 5, pp. 1573–80.

    Article  Google Scholar 

  20. 20 J. Reichel and J. Szekely: Iron Steelmak., 1995, vol. 22, pp. 41–8.

    CAS  Google Scholar 

  21. 21 R.J. Fruehan: Ironmak. Steelmak., 1976, vol. 3, pp. 33–37.

    CAS  Google Scholar 

  22. 22 W.A. Krivsky: Metall. Trans., 1973, vol. 4, pp. 1439–47.

    Article  CAS  Google Scholar 

  23. 23 J.M. Saccomano, R.J. Choulet, and J.D. Ellis: J. Met., 1969, vol. 21, pp. 59–64.

    CAS  Google Scholar 

  24. 24 R.J. Fruehan: Met. Trans. B, 1975, vol. 6, pp. 573–8.

    Article  Google Scholar 

  25. 25 K. Yamamoto, T. Mimura, S. Ito, and T. Onoye: Tetsu-to-Hagane, 1986, vol. 72, pp. 1034–46.

    Google Scholar 

  26. 26 Y.E. Lee and L. Kolbeinsen: ISIJ Int., 2005, vol. 45, pp. 1282–90.

    Article  CAS  Google Scholar 

  27. 27 B.-D. You: J. Korean Institue Met. Mater., 1995, vol. 33, pp. 1508–13.

    CAS  Google Scholar 

  28. 28 B.-D. You, J. Han, and J. Pak: Steel Res., 2000, vol. 71, pp. 22–6.

    Article  CAS  Google Scholar 

  29. 29 B.-D. You, K.-Y. Park, J.-J. Pak, and J.-W. Han: Met. Mater., 1999, vol. 5, pp. 395–9.

    Article  CAS  Google Scholar 

  30. 30 B.-D. You, B.-W. Lee, and J.-J. Pak: Met. Mater., 1999, vol. 5, pp. 497–502.

    Article  CAS  Google Scholar 

  31. 31 E.T. Turkdogan, P. Grieveson, and L.S. Darken: J. Am. Chem. Soc., 1963, vol. 67, pp. 1647–54.

    CAS  Google Scholar 

  32. 32 H. Liu, J. Liu, J. Schenk, F.M. Penz, L. Sun, R. Zhang, and Z. An: Metall. Mater. Trans. B, 2020, vol. 51, pp. 756–62.

    Article  Google Scholar 

  33. A. Rafiei, G.A. Irons, and K.S. Coley: Steel Res. Int., https://doi.org/10.1002/srin.202000480.

  34. 34 F. Oeters, K. Koch, R. Scheel, and U. Noelle: Arch Eisenhuettenwes, 1977, vol. 48, pp. 475–80.

    CAS  Google Scholar 

  35. 35 S.K. Dey and D.N. Ghosh: Metall. Mater. Trans. B, 1976, vol. 7, pp. 43–8.

    Article  Google Scholar 

  36. R. Tsujin, M. Hirai, T. Ohno, N. Ishiwata, and T. Inoshita: ISIJ Int., 1989, vol. 29, pp. 291–9.

    Article  Google Scholar 

  37. 37 Y.E. Lee: Metall. Mater. Trans. B, 1998, vol. 29, pp. 397–403.

    Article  Google Scholar 

  38. 38 G.F. Versteeg, P.M.M. Blauwhoff, and W.P.M. VAN Swaaij: Chem. Eng. Sci., 1987, vol. 42, pp. 1103–19.

    Article  CAS  Google Scholar 

  39. 39 J. Wei and H. Zuo: Steel Res. Int., 2007, vol. 78, pp. 863–75.

    Article  CAS  Google Scholar 

  40. 40 T. Yagi, Y. Ono, and M. Ushijima: Tetsu-to-Hagane, 1970, vol. 56, pp. 1640–45.

    Article  CAS  Google Scholar 

  41. 41 Y. Ono and S. Matsumoto: Trans. JIM, 1975, vol. 16, pp. 415–22.

    Article  Google Scholar 

  42. 42 H. Nomura and K. Mori: Tetsu-to-Hagane, 1969, vol. 55, pp. 1134–41.

    Article  CAS  Google Scholar 

  43. 43 D. Goldberg and G.R. Belton: Metall. Trans., 1974, vol. 5, pp. 1643–8.

    Article  CAS  Google Scholar 

  44. Y. Ono: Tetsu-to-Hagane, 1977, vol. 63, 1229–34.

    Article  Google Scholar 

  45. 45 Y. Wanibe, S. Takai, T. Kojima, and H. Sakao: Trans. Iron Steel Inst. Japan, 1980, vol. 20, pp. 783–89.

    Article  CAS  Google Scholar 

  46. 46 F.P. Calderon, N. Sano, and Y. Matsushita: Metall. Mater. Trans. B, 1971, vol. 2, pp. 3325–32.

    Article  Google Scholar 

  47. T. Saito, Y. Kawai, K. Maruya, and M. Maki: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A Phys. Chem. Metall., 1959, vol. 11, pp. 401–10.

  48. 48 A. Majdic, D. Graf, and H. Schenck: Arch. für das Eisenhüttenwes, 1969, vol. 40, pp. 627–30.

    Article  CAS  Google Scholar 

  49. 49 J.H. Park, D.S. Kim, and S. Lee: 2005, vol. 36, pp. 67–73.

    Article  CAS  Google Scholar 

  50. 50 O.K. Tokovoi, A. V Tokarev, A.N. Volkadaev, S.N. Prokofev, and A.N. Komarov: Izvvestiya Ross. Akad. Nauk. Met., 1995, vol. 3, pp. 10–4.

    Google Scholar 

  51. A. Rafiei, G.A. Irons, and K.S. Coley: Metall. Mater. Trans. B, Accepted for publication.

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada. Additional thanks go to ArcelorMittal Dofasco, Stelco, Praxair, and Hatch Ltd. for in-kind support and technical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliyeh Rafiei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 5, 2020; accepted April 6, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiei, A., Irons, G.A. & Coley, K.S. Kinetics of Decarburization and Manganese Loss from Fe–15Mn–1C Alloy by Bubbling of Argon–Oxygen Gas Mixtures. Metall Mater Trans B 52, 2375–2385 (2021). https://doi.org/10.1007/s11663-021-02180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02180-z

Navigation