Skip to main content
Log in

Simulation and Application of Ruhrstahl–Heraeus (RH) Reactor with Bottom-Blowing

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To increase the refining efficiency of the Ruhrstahl–Heraeus (RH) reactor used in steelmaking, extra gas was blown into the molten bath through the bottom of the ladle. Both water experimental and numerical simulation models were established to analyze the flow field behavior to select the optimal bottom-blowing position and to study the effects of the bottom-blowing flow rate on the flow field of the molten bath, slag eye formation, and snorkel refractory materials. The results show that the recirculation flow rate increases and the mixing time decreases with an increase in the bottom-blowing flow rate. When blowing at the optimal position, the velocity of the molten steel in the ladle increases with increasing gas flow rate, and the low-velocity zone between the down-snorkel and ladle wall disappears, but the slag eye is easily formed. The simulation and experimental results were applied to an industrial 150 t RH reactor, where the optimal bottom-blowing flow rate and position improved the refining effect without forming a slag eye or having adverse effects on the snorkel refractory. To reduce the mass fraction of hydrogen to 2.0 ppm, the required processing time was shortened by 16.40 pct, and the dehydrogenation rate was increased by 19.51 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.S. Liu, G.S. Zhu, H.X. Li, B.H. Li, and A.M. Cui: Int J Miner, Metall Mater, 2010, vol. 17, pp. 22–27.

    Article  CAS  Google Scholar 

  2. Y.T. Guo, S.P. He, B.Y. Shen, G.J. Chen, and Q. Wang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 585–94.

    Google Scholar 

  3. Y.G. Park, K.W. Yi, and S.B. Ahn: ISIJ Int., 2001, vol. 41, pp. 403–09.

    Article  CAS  Google Scholar 

  4. Y.G. Park, W.C. Doo, K.W. Yi, and S.B. An: ISIJ Int., 2007, vol. 48, pp. 749–55.

    Google Scholar 

  5. D.Q. Geng, H. Lei, and J.C. He: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 234–47.

    Article  CAS  Google Scholar 

  6. G. Chen, S. He, and Y. Li: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2176–86.

    Article  Google Scholar 

  7. H. Ling, F. Li, L. Zhang, and A.N. Conejo: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1950–61.

    Article  Google Scholar 

  8. G.J. Chen and S.P. He: Vacuum, 2016, vol. 130, pp. 48–55.

    Article  CAS  Google Scholar 

  9. Y.H. Li, Y.P. Bao, M. Wang, R. Wang, and D.C. Tang: Ironmaking Steelmaking, 2015, vol. 42, pp. 366–72.

    Article  CAS  Google Scholar 

  10. G.R. Demaglie, P. Tangari, S. Fera, and V. Colla: Ironmaking Steelmaking, 2013, vol. 37, pp. 257–61.

    Article  Google Scholar 

  11. D.Q. Geng, H. Lei, and J.C. He: Ironmaking Steelmaking, 2012, vol. 39, pp. 431–38.

    Article  CAS  Google Scholar 

  12. T. Kuwabara, K. Umezawa, K. Mori, and H. Watanabe: Trans. ISIJ, 1988, vol. 28, pp. 305–14.

    Article  CAS  Google Scholar 

  13. C.A.D. Silva, I.A.D. Silva, C.M.E.M. Dev, V. Seshadri, C.A. Perim and G.A. VargasFilho: Ironmak. Steelmak., 2004, vol. 31, pp. 37–42.

    Article  Google Scholar 

  14. S.K. Ajmani, S.K. Dash, S. Chandra, and C. Bhanu: ISIJ Int., 2004, vol. 44, pp. 82–90.

    Article  CAS  Google Scholar 

  15. M.Y. Zhu, J. Sha, and Z.Z. Huang: Acta Metall. Sin., 2000, vol. 36, pp. 1175–78.

    CAS  Google Scholar 

  16. H. Ling, L. Zhang, and C. Liu: Ironmaking Steelmaking, 2018, vol. 45, pp. 145–56.

    Article  CAS  Google Scholar 

  17. P.A. Kishan and S.K. Dash: ISIJ Int., 2009, vol. 49, pp. 495–504.

    Article  CAS  Google Scholar 

  18. B.K. Li and F. Tsukihashi: ISIJ Int., 2000, vol. 40, pp. 1203–09.

    Article  CAS  Google Scholar 

  19. F. Obata, R. Waka, K. Uehara, K. Itou, and Y. Kawata: Tetsu-to-Hagané, 2000, vol. 86, pp. 225–30.

    Article  CAS  Google Scholar 

  20. B.K. Li and F. Tsukihashi: ISIJ Int., 2005, vol. 45, pp. 972–78.

    Article  CAS  Google Scholar 

  21. D.Q.Geng, H. Lei, and J.C.He: ISIJ Int., 2012, vol. 52, pp. 1036–44.

    Article  CAS  Google Scholar 

  22. J.H. Wei and H.T. Hu: Steel Res. Int., 2006, vol. 77, pp. 91–96.

    Article  CAS  Google Scholar 

  23. D.Q. Geng, J.X. Zheng, K. Wang, P. Wang, R.Q. Liang, H.T. Liu, H. Lei, and J.C. He: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1484–93.

    Article  Google Scholar 

  24. S. He, G. Chen, and C. Guo: Ironmaking Steelmaking, 2017, vol. 46, pp. 1–6.

    CAS  Google Scholar 

  25. Y. Luo, C. Liu, Y. Ren, and L. Zhang: Steel Res. Int., 2018, vol. 89, 1800048

    Article  Google Scholar 

  26. Q. Cao and L. Nastac: Ironmaking Steelmaking, 2019, vol. 47, pp. 1–9.

    Google Scholar 

  27. L. Wei, H. Tang, M. Wang, J. Li, Q. Liu, and J. Liu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2681–91.

    Google Scholar 

  28. L.M. Li, Z.Q. Liu, M.X. Cao, and B.K. Li: JOM, 2015, vol. 67, pp. 1459–67.

    Article  CAS  Google Scholar 

  29. M. Iguchi, Z. Morita, H. Tokunaga, and H. Tatemichi: ISIJ Int., 1992, vol. 32, pp. 865–72.

    Article  CAS  Google Scholar 

  30. M. Iguchi and H. Tokunaga: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 695–702.

    Article  CAS  Google Scholar 

  31. W.T. Lou, M.Y. Zhu: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1251–63.

    Article  Google Scholar 

  32. G.J. Chen, S.P. He, Y.G. Li, Y.T. Guo, Q. Wang: JOM, 2015, vol. 68, pp. 2138–48.

    Article  Google Scholar 

  33. A.B. Liu, D. Mather, and R.D. Reitz, Modeling the Effects of Drop Drag and Breakup on Fuel Sprays, SAE Technical Paper 930072, Warrendale, PA: SAE, 1993.

  34. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335–54.

    Article  CAS  Google Scholar 

  35. M. Sano, K. Mori, and Y. Fujita: Tetsu-to-Hagané, 1979, vol. 65, pp. 1140–48.

    Article  CAS  Google Scholar 

  36. A. Satyanarayan, R. Kumar, and N.R. Kuloor: Chem. Eng. Sci., 1969, vol. 24, pp. 731–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Zhu or Guangsheng Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 27, 2020; Accepted April 5, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Feng, C., Zhu, R. et al. Simulation and Application of Ruhrstahl–Heraeus (RH) Reactor with Bottom-Blowing. Metall Mater Trans B 52, 2127–2138 (2021). https://doi.org/10.1007/s11663-021-02174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02174-x

Navigation