Skip to main content
Log in

Compression Deformation Mechanism and Constitutive Equation of Ti-Mo Steel in the Mushy Zone

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The deformation mechanism and constitutive equation of Ti-Mo steel in the mushy zone were investigated through high-temperature compression deformation. Nonlinear fitting and polynomial fitting were used to build a precise constitutive model. The law of microstructure evolution was also researched. During the deformation of Ti-Mo steel in the mushy zone, the liquid phase was squeezed to the edge, and macro separation between the solid and liquid occurred after deformation. The extent of dynamic crystallization in Ti-Mo steel increased with increasing strain rate, which is quite different from the dynamic recrystallization occurring during deformation in the solid region. The critical condition for dynamic recrystallization decreased and the grain refinement degree increased due to the return temperature effect of the liquid between solid particles. The prediction accuracy of the modified Fields–Backofen (FB) model with a liquid-phase adjustment factor was compared with that of the Arrhenius model with a liquid-phase adjustment factor. The results showed that the modified FB model had low prediction accuracy. The Arrhenius model with a liquid-phase adjustment factor was revised according to different strain rates. The revised model had higher prediction accuracy and was suitable for describing the metal rheology in the mushy zone of Ti-Mo steel, with accuracy of approximately 90 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. 1.F. J. Zerilli and R. W. Armstrong: J. Appl. Phys., 1987, vol. 54, pp1816-25.

    Article  Google Scholar 

  2. 2.J. M. Cabrera, A. A. Omar, J. J. Jonas and J. M. Prado: Metall. Mater. Trans. A, 1997, vol.28, pp 2233-44.

    Article  CAS  Google Scholar 

  3. 3.C. Ji, Z. L. Wang, C. H. Wu and M. Y. Zhu: Metall. Mater. Trans. B, 2018, vol. 49, pp767-82.

    Article  Google Scholar 

  4. 4.M. A. Davinci, D. Samantaray, U. Borah, S. K. Albert and A. K. Bhaduri: Mater. Des. 2015, vol. 88: 567-76.

    Article  Google Scholar 

  5. 5.Y. C. Lin and G. Liu: J. Mater. Sci. Eng. A. 2009, vol. 523, pp. 139-44.

    Article  Google Scholar 

  6. J. Luo, M. Q. Li and D. W. Ma: J. Mater. Sci. Eng. A. 2012, vol. 532, pp. 548-57.

    Article  CAS  Google Scholar 

  7. 7.C. Ji, S. Luo and M.Y. Zhu: ISIJ Int., 2014, vol. 54, pp. 504-10.

    Article  CAS  Google Scholar 

  8. 8.C. H. Wu, C. Ji and M. Y. Zhu: J. Mater. Process. Technol., 2019, vol. 271, pp. 651-59.

    Article  Google Scholar 

  9. G. R. Johnson and W. H. Cook: High strain-rates and high temperatures Proc 7th Int. Symp. Ballistics., 1983, vol. 547, pp. 54–417.

  10. F. J. Zerilli and R.W. Armstrong: Appl. Phys., 1987, vol. 62, pp. 1816-25.

    Article  Google Scholar 

  11. 11.C. M. Sellars and W. J. Mctegart: Acta. Metall., 1966, vol.14, pp.1136-8.

    Article  CAS  Google Scholar 

  12. 12.D. Samantaray, S. Mandal, U. Borah, A. K. Bhaduri and P. V. Sivaprasad: Mater. Sci. Eng. A., 2009, vol.526, pp.1-6.

    Article  Google Scholar 

  13. 13.D. Samantaray, S. Mandal and A. K. Bhaduri: Comput. Mater. Sci., 2009, vol.47, pp.568-76.

    Article  CAS  Google Scholar 

  14. 14.Z. J. Pu, K. H Wu, J. Shi and D. Zou: Mater. Sci. Eng. A., 1995, vol.192, pp.780-7.

    Article  Google Scholar 

  15. 15.Y. C. Lin, M. S. Chen and J. Zhong: Comput. Mater. Sci., 2008, vol.42, pp.470-7.

    Article  CAS  Google Scholar 

  16. 16.J. J. Wang, A. B. Phillion and G. M. Lu: J. Alloys Compd., 2014, vol. 609, pp. 290-5.

    Article  CAS  Google Scholar 

  17. 17.L. H. Qi, Z. J. Wang, J. M. Zhou, L. Z. Su and H. J. Li: Compos. Sci. Technol., 2011, vol.71, pp. 955-61.

    Article  CAS  Google Scholar 

  18. 18.C. G. Kang and H. K. Jung: Int. J. Mech. Sci., 1999, vol. 41, pp. 1423-45.

    Article  Google Scholar 

  19. 19.Y. Xu, C. Chen, J. B. Jia, X. X. Zhang, H. H. Dai and Y. Yang: J. Alloys Compd., 2018, vol. 748, pp. 694-705.

    Article  CAS  Google Scholar 

  20. 20.G. Chen, Y. F. Lin, S. J. Yao, F. Han, B. Wei and Y. M. Zhang: J. Alloys Compd., 2016, vol. 674, pp. 26-36.

    Article  CAS  Google Scholar 

  21. 21.Q. Tang, M. Y. Zhou, L. L. Fan, Y. W. Zhang, G. F. Quan and B Liu: Vacuum, 2018, vol. 155 pp. 476-489.

    Article  CAS  Google Scholar 

  22. 22.X. H. Chen and H. Yan: J. Alloys Compd., 2017, vol.708, pp. 751-62.

    Article  CAS  Google Scholar 

  23. 23.H. Li, C. Miao, L. Q. Niu, K. Huang and Q. Zhang: J. Alloys Compd., 2021, vol.854 157124.

    Article  CAS  Google Scholar 

  24. 24.S. J. Qu, A. H. Feng, L. Geng, Z.Y. Ma and J. C Han: Scr. Mater., 2007, vol. 56: pp.951-54.

    Article  CAS  Google Scholar 

  25. 25.C. Q. Zhao and R. B. Song: Mater. Des., 2014, vol. 59: pp.502-8.

    Article  CAS  Google Scholar 

  26. G. R. Ebrahimi, H. Keshiri, A. Momeni, M. Mazinani: Mater. Sci. Eng. A, 2011, 528: 7488-93.

    Article  CAS  Google Scholar 

  27. D. S. Fields, W. A. ASTM Proceedings American Society for Testing and Materials, 1957, vol. 57: pp. 1259–72.

  28. 28.L. C. Tsao, Y. T. Huang and K. H. Fan: Mater. Des., 2014, vol. 53: pp.865-69.

    Article  CAS  Google Scholar 

  29. 29.Y. C. Lin, M. S. Chen and J. Zhong: Comput. Mater. Sci., 2008, vol.42, pp. 470-77.

    Article  CAS  Google Scholar 

  30. 30.G. Bao and Z. Lin: Acta Mater., 1996, vol. 44, pp.1011-19.

    Article  CAS  Google Scholar 

  31. 31.K. Higashi, T. G. Nieh, M. Mabuchi and J. Wadworth: Scr. Metall. Mater., 1995, vol. 32, pp. 1079-84.

    Article  Google Scholar 

Download references

Acknowledgments

The present work was financially supported by the National Natural Science Foundation of China (51974078, U1708259 and U20A20272), the Fourth Period Science and Technology Key Project of Panxi Experimental Area, the Talent Project of Revitalizing Liaoning (XLYC1907176 and 1802032), and the Fundamental Research Funds for the Central Universities of China (N2025012, N2125018, and N2125007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 16, 2020; March 30, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Zhou, Q., Ji, C. et al. Compression Deformation Mechanism and Constitutive Equation of Ti-Mo Steel in the Mushy Zone. Metall Mater Trans B 52, 2194–2209 (2021). https://doi.org/10.1007/s11663-021-02169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02169-8

Navigation