Skip to main content
Log in

Microstructure and Solidification Cracking Analysis of Dissimilar Pulsed Laser Welded Hastelloy X to 347 Stainless Steel Using Phase-Field Models

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A phase-field model is utilized to associate the solidification behavior of dendrites to the microscopic characteristics of the weld and to characterize the microstructure evolution in dissimilar pulsed laser welded Hastelloy X to 347 stainless steel alloy. The simulations reveal that the morphology of the dendrites during rapid solidification of the molten zone is affected by a melt flow and dilution level. The effect of melt flow as a result of Marangoni convection is modeled by Boussinesq approximation to adjust the concentration field around a developing dendrite, modifying its growth morphologies. The enhancement of hot cracking resistance is studied by adjusting the microstructure morphology through the possibility of the backfilling of the melt for the most efficient dendrite spacing, which was evaluated by correlation of the heat conduction problem and the phase-field model. Besides, the laser offset was estimated by finding the optimal chemical composition of the weld zone in the ternary Fe-Nieq-Creq system that affects the microstructure predicted by the phase-field model. The segregation of nanoparticle compounds analyzed by TEM in interdendritic regions is possible for primary dendrite spacing higher than 3 μm and consequently the solidification cracking susceptibility is increased.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. M.R.N. Esfahani, J. Coupland, and S. Marimuthu: J. Mater. Process. Technol., 2015, vol. 224, pp. 135–42.

    Article  CAS  Google Scholar 

  2. K. Hao, M. Gao, R. Wu, and X. Zeng: J. Mater. Process. Technol., 2020, vol. 275, p. 116330.

    Article  CAS  Google Scholar 

  3. W. Kurz, C. Bezençon, and M. Gäumann: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 185–91.

    Article  CAS  Google Scholar 

  4. X.H. Zhan, Z.B. Dong, Y.H. Wei, and R. Ma: J. Cryst. Growth, 2009, vol. 311, pp. 4778–83.

    Article  CAS  Google Scholar 

  5. A. Farzadi, M. Do-Quang, S. Serajzadeh, A.H. Kokabi, and G. Amberg: Model. Simul. Mater. Sci. Eng., 2008, vol. 16, p. 065005.

    Article  Google Scholar 

  6. D. Montiel, L. Liu, L. Xiao, Y. Zhou, and N. Provatas: Acta Mater., 2012, vol. 60, pp. 5925–32.

    Article  CAS  Google Scholar 

  7. V. Fallah, M. Amoorezaei, N. Provatas, S.F. Corbin, and A. Khajepour: Acta Mater., 2012, vol. 60, pp. 1633–46.

    Article  CAS  Google Scholar 

  8. W.J. Zheng, Z.B. Dong, Y.H. Wei, K.J. Song, J.L. Guo, and Y. Wang: Comput. Mater. Sci., 2014, vol. 82, pp. 525–30.

    Article  CAS  Google Scholar 

  9. N.S. Bailey, K.-M. Hong, and Y.C. Shin: Comput. Mater. Sci., 2020, vol. 172, p. 109291.

    Article  CAS  Google Scholar 

  10. F. Yu, Y. Wei, Y. Ji, and L.-Q. Chen: J. Mater. Process. Technol., 2018, vol. 255, pp. 285–93.

    Article  CAS  Google Scholar 

  11. M. Gaoyang, X. Lingda, W. Chunming, J. Ping, and Z. Guoli: Mater. Des., 2019, vol. 181, p. 107980.

    Article  Google Scholar 

  12. S. Geng, P. Jiang, X. Shao, G. Mi, H. Wu, Y. Ai, C. Wang, C. Han, R. Chen, and W. Liu: Scr. Mater., 2018, vol. 150, pp. 120–4.

    Article  CAS  Google Scholar 

  13. P. Nie, O.A. Ojo, and Z. Li: Acta Mater., 2014, vol. 77, pp. 85–95.

    Article  CAS  Google Scholar 

  14. J.A. Dantzig and L.S. Chao: in 10th U.S. Natl. Cong. Appl. Mech., J.P. Lamb, ed., ASME, 1986, pp. 249–55.

  15. J.-H. Jeong, N. Goldenfeld, and J.A. Dantzig: Phys. Rev. E, 2001, vol. 64, p. 041602.

    Article  CAS  Google Scholar 

  16. A. Zhang, S. Meng, Z. Guo, J. Du, Q. Wang, and S. Xiong: Metall. Mater. Trans. B, 2019, 50:1514-26. Doi:10.1007/s11663-019-01549-5.

    Article  CAS  Google Scholar 

  17. Y. Zhao, B. Zhang, H. Hou, W. Chen, and M. Wang: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1044–52.

    Article  Google Scholar 

  18. T. Suzuki, M. Ode, S.G. Kim, and W.T. Kim: J. Cryst. Growth, 2002, vol. 237–239, pp. 125–31.

    Article  Google Scholar 

  19. H. Kobayashi, M. Ode, S. G Kim, W. T Kim, and T. Suzuki: Scr. Mater., 2003, vol. 48, pp. 689–94.

    Article  CAS  Google Scholar 

  20. S.G. Kim: Acta Mater., 2007, vol. 55, pp. 4391–9.

    Article  CAS  Google Scholar 

  21. J. Kundin, L. Mushongera, and H. Emmerich: Acta Mater., 2015, vol. 95, pp. 343–56.

    Article  CAS  Google Scholar 

  22. T. Azimzadegan and S.A.A.A. Mousavi: J. Manuf. Process., 2019, 44:226-40. Doi:10.1016/j.jmapro.2019.06.005.

    Article  Google Scholar 

  23. R. Siquieri, J. Rezende, J. Kundin, and H. Emmerich: Eur. Phys. J. Spec. Top., 2009, vol. 177, pp. 193–205.

    Article  Google Scholar 

  24. L. Wang, Y. Wei, F. Yu, Q. Zhang, and Q. Peng: Cryst. Res. Technol., 2016, vol. 51, pp. 602–9.

    Article  CAS  Google Scholar 

  25. J.N. Dupont, S.W. Banovic, and A.R. Marder: Weld. J. 2002; 7:374-83.

    Article  Google Scholar 

  26. A. Badillo and C. Beckermann: Acta Mater., 2006, vol. 54, pp. 2015–26.

    Article  CAS  Google Scholar 

  27. M.C. Tsai and S. Kou: Int. J. Numer. Methods Fluids, 1989; 9:1503-16. doi:10.1002/fld.1650091206.

    Article  Google Scholar 

  28. D.L. Olson and G.R. Edwards: Philos. Trans. R. Soc. A 1998; 356:927-40. doi:10.1098/rsta.1998.0197.

    Article  CAS  Google Scholar 

  29. A. Kumar and P. Dutta: J. Mater. Sci., 2009, vol. 44, pp. 3952–61.

    Article  CAS  Google Scholar 

  30. S. Chen, X.-X. Ye, D.K.L. Tsang, L. Jiang, K. Yu, C. Li, and Z. Li: J. Mater. Sci. Technol., 2019, vol. 35, pp. 29–35.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the University of Tehran for providing facilities and equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Asghar Akbari Mousavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 13, 2020; accepted March 29, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimzadegan, T., Mousavi, S.A.A.A. Microstructure and Solidification Cracking Analysis of Dissimilar Pulsed Laser Welded Hastelloy X to 347 Stainless Steel Using Phase-Field Models. Metall Mater Trans B 52, 2307–2326 (2021). https://doi.org/10.1007/s11663-021-02168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02168-9

Navigation