Skip to main content

Roasting and Leaching Behavior of Nickel Laterite Ore

Abstract

Nickel is mostly extracted from sulfide ores, however, laterite ores account for over 60 pct of all nickel resources in the world, and despite its predominance, there is no well-established process to extract nickel from such ores. Nickel in laterites is hosted in many different compounds such as oxides, hydroxides, and silicates minerals. The sulfation-roasting-leaching process has the potential to change this scenario once it can be applied to all kinds of nickel laterite ores and does not consume much acid, as in the atmospheric leaching process. The main characteristic of the process is the iron sulfates decomposition during roasting steps, which produces sulfur trioxide (SO3). The sulfur trioxide is reactive with metals such as nickel and cobalt, converting them to soluble sulfates, and reducing acid consumption. Experiments were conducted to establish the optimal conditions to extract nickel from laterite ores using the sulfation-roasting-leaching process. Various parameters were investigated: water addition, sulfuric acid concentration, the number of heat-treatments steps, roasting temperature and time, leaching time, and solid/liquid ratio. Furthermore, the phase changes during thermal treatments were investigated to identify the mechanisms involved in the transformation of the minerals. Experimental results indicated that nickel forms sulfates through three different ways: reacting with H2SO4 during sulfation, with Fe2(SO4)3 (ferric sulfate) or Fe(OH)SO4 (basic iron sulfates) during the heat-treatments, and also throughout the leaching step due to iron-rich phase dissolution. More than 83.0 pct Ni, 90.0 pct Co, 61.3 pct Al, 17.3 pct Ca, 85.7 pct Mg, 87.5 pct Mn, 1.1 pct Ti, and 16.6 pct Fe were extracted under optimums conditions.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport: in Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011, pp. 21–37.

  2. V.R.C. Thanu, C. Andrew, and M. Jayakumar: Surfaces and Interfaces, 2020, vol. 19, p. 100539.

    CAS  Article  Google Scholar 

  3. X.Y. Guo, W.T. Shi, D. Li, and Q.H. Tian: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 191–5.

    CAS  Article  Google Scholar 

  4. D.D. Radev: Adv. Powder Technol., 2010, vol. 21, pp. 477–82.

    CAS  Article  Google Scholar 

  5. S. Geng, H. Dong, Y. Lu, S. Wang, Y. Huang, X. Zou, Y. Zhang, Q. Xu, and X. Lu: Sep. Purif. Technol., 2020, vol. 242, p. 116779.

    CAS  Article  Google Scholar 

  6. P. Meshram, and B.D. Pandey: Miner. Process. Extr. Metall. Rev., 2018, vol. 40, pp. 157–93.

    Article  Google Scholar 

  7. B. Li, Z. Ding, Y. Wei, H. Wang, Y. Yang, and M. Barati: Metall. Mater. Trans. B , 2018, vol. 49, pp. 3067–73.

    Article  Google Scholar 

  8. R.G. McDonald and B.I. Whittington: 2008, Hydrometallurgy. vol. 91, pp. 35–55.

    CAS  Article  Google Scholar 

  9. C.K. Thubakgale, R.K.K. Mbaya, and K. Kabongo: Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2012, vol. 6, pp. 761–5.

    Google Scholar 

  10. U. Soelistijo: Earth Sci. Sci. Publ. Group, 2013, vol. 2, pp. 129–38.

    Google Scholar 

  11. C.R.M. Butt and D. Cluzel: Elements, 2013, vol. 9, pp. 123–8.

    CAS  Article  Google Scholar 

  12. Investing News Network (INN): Base Metals Price and Investing Opportunities, Vancouver, 2017.

  13. V. de AlvarengaOliveira, C.G. dos Santos, and E. de AlbuquerqueBrocchi: Metall. Mater. Trans. B , 2019, vol. 50, pp. 1309–21.

    Article  Google Scholar 

  14. U.S. Geological Survey (USGS): Mineral Commodity Summaries 2019, vol. 3, Virginia, Estados Unidos da América, 2019.

  15. A. Briceno and K. Osseo-Asare: Metall. Mater. Trans. B, 1995, vol. 26, pp. 1123–31.

    CAS  Article  Google Scholar 

  16. M. Jiang, T. Sun, Z. Liu, J. Kou, N. Liu, and S. Zhang: Int. J. Miner. Process., 2013, vol. 123, pp. 32–8.

    CAS  Article  Google Scholar 

  17. N.D.H. Munroe: Metall. Mater. Trans. B, 1997, vol. 28, pp. 995–1000.

    CAS  Article  Google Scholar 

  18. H. Basturkcu, N. Acarkan, and E. Gock: Int. J. Miner. Process., 2017, vol. 163, pp. 1–8.

    CAS  Article  Google Scholar 

  19. S. Kursunoglu and M. Kaya: Int. J. Miner. Process., 2016, vol. 150, pp. 1–8.

    CAS  Article  Google Scholar 

  20. W. Luo, Q. Feng, L. Ou, G. Zhang, and Y. Lu: Hydrometallurgy, 2009, vol. 96, pp. 171–5.

    CAS  Article  Google Scholar 

  21. J. A. Johnson, B.C. Cashmore, and R.J. Hockridge: Miner. Eng., 2005, vol. 18, pp. 1297–303.

    CAS  Article  Google Scholar 

  22. M.A.R. Önal and Y.A. Topkaya: Hydrometallurgy, 2014, vol. 142, pp. 98–107.

    Article  Google Scholar 

  23. R.G. McDonald and B.I. Whittington: Hydrometallurgy, 2008, vol. 91, pp. 56–69.

    CAS  Article  Google Scholar 

  24. J. Luo, G. Li, M. Rao, Z. Peng, Y. Zhang, and T. Jiang: Miner. Eng., 2015, vol. 78, pp. 38–44.

    CAS  Article  Google Scholar 

  25. B.K. Loveday: Miner. Eng., 2008, vol. 21, pp. 533–8.

    CAS  Article  Google Scholar 

  26. J. Li, K. Bunney, H.R. Watling, and D.J. Robinson: Miner. Eng., 2013, vol. 41, pp. 71–8.

    Article  Google Scholar 

  27. G. Li, T. Shi, M. Rao, T. Jiang, and Y. Zhang: Miner. Eng., 2012, vol. 32, pp. 19–26.

    Article  Google Scholar 

  28. H. Basturkcu and N. Acarkan: Physicochem. Probl. Miner. Process., 2016, vol. 52, pp. 564–74.

    CAS  Google Scholar 

  29. X. Guo, D. Li, K.H. Park, Q. Tian, and Z. Wu: Hydrometallurgy, 2009, vol. 99, pp. 144–50.

    CAS  Article  Google Scholar 

  30. J. Li, X. Li, Q. Hu, Z. Wang, Y. Zhou, J. Zheng, W. Liu, and L. Li: Hydrometallurgy, 2009, vol. 99, pp. 84–8.

    CAS  Article  Google Scholar 

  31. F. O’Connor, W.H. Cheung, and M. Valix: Int. J. Miner. Process., 2006, vol. 80, pp. 88–99.

    Article  Google Scholar 

  32. X.J. Zhai, Q. Wu, Y. Fu, L.Z. Ma, C.L. Fan, and N.J. Li: Trans. Nonferrous Met. Soc. China , 2010, vol. 20, pp. s77–81.

    CAS  Article  Google Scholar 

  33. B. Ma, W. Yang, Y. Pei, C. Wang, and B. Jin: Hydrometallurgy, 2017, vol. 169, pp. 411–7.

    CAS  Article  Google Scholar 

  34. K.B. Krauskopf: Geochim. Cosmochim. Acta, 1956, vol. 10, pp. 1–26.

    CAS  Article  Google Scholar 

  35. R.O. Fournier and J.J. Rowe: The solubility of amorphous silica in water at high temperatures and high pressures|American Mineralogist|GeoScienceWorld, https://pubs.geoscienceworld.org/msa/ammin/article-abstract/62/9-10/1052/104609/The-solubility-of-amorphous-silica-in-water-at?redirectedFrom=fulltext. Accessed 14 August 2020.

Download references

Acknowledgments

The authors wish to thank Instituto Tecnológico Vale/Vale S.A, the Brazilian research agency CNPq, and Prof. Dilson Silva dos Santos (COPPE/UFRJ). RN acknowledges financial support from CNPq (Grant 315472/2018-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Paulo Medeiros Ribeiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 15, 2020; accepted March 3, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, P.P.M., dos Santos, I.D., Neumann, R. et al. Roasting and Leaching Behavior of Nickel Laterite Ore. Metall Mater Trans B 52, 1739–1754 (2021). https://doi.org/10.1007/s11663-021-02141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02141-6