Skip to main content

Advertisement

Log in

Pb Recovery of Waste Cathode Ray Tube Funnel Glass by PbO Vapor Vacuum Reduction (PVVR) Process and the Feasibility of Luminescent Glass Production

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Cathode ray tube (CRT) waste funnel glass as a past energy material is a hazardous waste that contains toxic lead oxide, presenting a great environmental challenge worldwide. There is a significant need for an effective treatment method to facilitate safe disposal of CRT. In this work, a novel and simple method to remove lead oxide and recycle metallic lead was developed by PbO vapor vacuum reduction (PVVR) process. Use of vacuum thermal process allows the successful removal of lead oxide from waste CRT funnel glass and recycling of PbO. To obtain metallic Pb and remove the volatile potassium and sodium elements, the PbO vapor vacuum reduction (PVVR) process was designed and implemented. The optimum reduction temperature and holding time for lead recovery were 1573 K and 120 minutes, respectively. Under this condition, more than 98 pct of lead can be removed from waste funnel glass and the Pb content in parent glass was successfully reduced to 0.38 pct. The metallic Pb microspheres with 99.36 pct purity were obtained and the Pb leaching concentration of residual glass was 1.67 mg/L as measured by the Toxicity Characteristic Leaching Procedure (TCLP) test. Additionally, the charcoal layers have a greater than 85 pct K adsorption effect and do not contaminate residual glass. Then, luminescent Tb3+ glass as an energy material using residual glass was greatly luminescence performance. Overall, this work presents a simple and effective process for the detoxification and utilization of waste CRT funnel glass as well as the recovery of Pb by vacuum metallurgy technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. 1. M.L. Socolof, J.G. Overly,. J.R. Geibig, J. Clean Prod., 2005, vol. 13, pp.1281-1294.

    Article  Google Scholar 

  2. Statica, Global TV Shipments Forecast From 2009 to 2016, by Technology (in million units). http://www.statista.com/statistics/260367/globaltv-shipments-forecast/.

  3. N. Singh, J.H. Li, X.L. Zeng, Waste Manag., 2016, vol. 57, pp. 187-197.

    Article  Google Scholar 

  4. Y.C. Jang, T.G. Townsend, J. Environ. Sci. Technol., 2003, vol.7, pp. 4778-4784.

    Article  Google Scholar 

  5. 5. M. Yu, L. Liu, J. H. Li, Procedia Environmental Sciences, 2016, vol. 31, pp. 887-896.

    Article  Google Scholar 

  6. F. Mear, P. Yot, M. Cambon, M. Ribes, Waste Manage., vol. 26, pp. 1468–76.

  7. C. Baldé, F. Wang, R. Kuehr, J. Huisman, The global e-waste monitor- 2014.United Nations University, IAS–SCYCLE, Bonn, Germany. 2015.

  8. 8. J. R. Gregory, M. C. Nadeau, R.E. Kirchain, J. Environ. Sci. Technol. 2009, vol. 43, pp. 9245-9251.

    Article  CAS  Google Scholar 

  9. F. Wang, B. Hu. A Forecast of the Amount of Recovery in Obsolete CRT Leaded Glass. Tianjin University of Technology, 2016.

  10. 10. Q.B. Song, Z.S. Wang, J.H. Li, et al., Waste Manage., 2012, vol. 32, pp. 1926-1936.

    Article  Google Scholar 

  11. 11. F. Andreola,L Barbieri,A. Corradi. I Lancellotti, J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1623-1629.

    Article  CAS  Google Scholar 

  12. S. Heart, Clean Soil Air Water, 2008, vol. 36, pp. 19-24.

    Article  Google Scholar 

  13. C. Mengjun, Research on harmless treatment technology of waste CRT glass. 2009, DOI: http://159.226.240.226/handle/311016/304.

  14. 14. M.F. Xing, F.S. Zhang, J. Hazard. Mater., 2011, vol.194, pp. 407–413.

    Article  CAS  Google Scholar 

  15. 15. M.F. Xing, Y.P. Wang, J. Li, J. Hazard. Mater., 2016, vol. 305, pp. 51-58.

    Article  Google Scholar 

  16. 16. M.F. Xing, Z.G. Fu, Y.P. Wang, L J. Hazard Mater., 2017, vol. 322, pp. 479-487.

    Article  CAS  Google Scholar 

  17. 17. C.L. Zhang, L.L. Zhuang, W.Y. Yuan. Hydrometallurgy. 2016, vol. 165, pp. 312-317.

    Article  CAS  Google Scholar 

  18. 18. Takashi Okada, Susumu Yonezawa, Waste Manag., 2014, vol. 34, pp. 1470-1479.

    Article  CAS  Google Scholar 

  19. 19. Takashi Okada, Fumihiro Nishimura, Waste Manag., 2015, vol. 45pp. 343-350.

    Article  CAS  Google Scholar 

  20. 20. B. Aseel, A.L. Zubaid, Kadum Muttar Shabeeb, Aynoor Ibrahim Ali, Energy Procedia. 2017, vol. 119, pp. 680-692.

    Article  Google Scholar 

  21. 21. Giada Kyaw Oo D’Amore, Marco Caniato, Andrea Travan, J. Clean Prod., 2017, vol. 165, pp. 1306-1315.

    Article  Google Scholar 

  22. N. Glass, Recycling CRTs from televisions & computer screens. http://www.nulifeglass.com/. 2013.

  23. S. Kuusakoski, 2014. http://www.sweeepkuusakoski.co.uk/. UK department of the environment, 1995. metal manufacturing, refining and finishing works: lead works. department of the environment (DOE), UK.

  24. W.W. Hu, X.D. Xu, Nonferrous Metals (Extractive Metallurgy). 2015, vol. 8, pp. 24–26.

  25. J.Q. An, K. Huang, Y. Zhao, H. Ma, T.K. Wang, R.P. Hu, K.Y. Sun, X.L. Wang, Nonferrous Metals (Extractive Metallurgy). 2016, vol. 18(3), pp. 10–12.

  26. Y. Wang, J. Zhu, J. Hazard Mater., 2012, pp. 215–216, 90–97.

  27. 27. Takashi Okada, Susumu Yonezawa, Waste Manage., 2013, vol. 33 (8), pp.1758-1763.

    Article  CAS  Google Scholar 

  28. 28. M.J. Chen,, F.S. Zhang, J. Zhu, J. Hazard. Mater., 2010, vol. 182 (1), pp. 45-49.

    Article  CAS  Google Scholar 

  29. 29. P.G. Yot, F.O. Méar, J. Hazard. Mater., 2009, vol. 172, pp. 117-123.

    Article  CAS  Google Scholar 

  30. 30. F. Méar, P. Yot, M. Ribes, Mater. Lett., 2006, vol. 60, pp. 929-934.

    Article  Google Scholar 

  31. 31. J.F. Lv, H.Y. Yang, Z.N. Jin, Z.Y. Ma, Y. Song, Waste Manage., 2016, vol. 57, pp. 198-206.

    Article  CAS  Google Scholar 

  32. 32. J.F. Lv, H.Y. Yang, Z.N. Jin, M.L. Zhao, Waste Management., 2018, vol. 76, pp. 687–696.

    Article  CAS  Google Scholar 

  33. 33. B. Hu, W.L. Hui, Waste Manag., 2017, vol. 67, pp. 253-258.

    Article  CAS  Google Scholar 

  34. 34. B. Hu, W.L. Hui, J. Hazard. Mater., 2018, vol. 343, pp. 220-226.

    Article  CAS  Google Scholar 

  35. G. Grause, K. Takahashi, T. Kameda, T. Yoshioka, Thermochim. Acta. 2014, vol. 596, pp. 596.

    Article  Google Scholar 

  36. G. Grause, T. Yamamoto, T. Kameda, J. Environ. Sci. Teachnol., 2014, vol. 11, pp. 959-966.

    CAS  Google Scholar 

  37. 37. A. Erzat, F.S. Zhang, Environ. Technol., 2014, vol. 35 (21–24), pp. 2774–2780.

    Article  CAS  Google Scholar 

  38. 38. M.J. Chen, F.S. Zhang, J. Zhu, J. Hazard. Mater., 2009, vol. 161, pp. 1109–1113.

    Article  CAS  Google Scholar 

  39. 39. N. Singh, J.H. Li, J. Clean Prod., 2017, vol. 148, pp.103-110.

    Article  CAS  Google Scholar 

  40. 40. E. Bernardo, J Eur Ceram Soc., 2007, vol. 27, pp. 2415–2422.

    Article  CAS  Google Scholar 

  41. 41. E. Bernardo, R. Cedro, M. Florean, S. Hreglich, Ceram. Int., 2007, vol.33, pp. 963–968.

    Article  CAS  Google Scholar 

  42. 42. H.R. Fernandes, F. Andreola, L. Barbieri, I. Lancellotti, M.J. Pascual, J.M. Ferreira, Ceram. Int., 2013, vol. 39, pp. 9071–9078.

    Article  CAS  Google Scholar 

  43. 43. H.R. Fernandes, D.D. Ferreira, F. Andreola, I. Lancellotti, L. Barbieri,, J.M. Ferreira, Ceram. Int., 2014, vol.40, pp. 13371-13379.

    Article  CAS  Google Scholar 

  44. B. Mary, S. Ogundiran, S. Ikpeni, Enakerakpo, Afr. J. Pure Appl. Chem., 2018, vol. 12(6), pp. 42-49.

    Article  Google Scholar 

  45. Y. Zhou, C.-Z. Liao, and K. Shih, ACS Sustain. Chem. Eng. 2018.

  46. 46. M. Matsuno, K. Tomoda, T. Nakamura, Mater Trans. 2003, vol. 44, pp. 2481-2488.

    Article  CAS  Google Scholar 

  47. 47. W. J. Kroll, Trans. Electrochem. Soc., 1940, vol. 78, pp. 35-47.

    Article  Google Scholar 

  48. 48. J. Kang, T. H. Okabe, Metallurgical & Materials Transactions B, 2013, vol. 44(3), pp. 516-527.

    Article  CAS  Google Scholar 

  49. 49. F. Mear, P. Yot, M. Cambon, M. Ribes, Waste Manage., 2006, vol. 26, pp. 1468-1476.

    Article  CAS  Google Scholar 

  50. 50. Z.Y. Fu, P.B. Xu, Y.S. Yang, C. Li, H. Lin, Q.M. Chen, G.P. Yao, Y.Y. Zhou, Fanming Zeng, Journal of Luminescence. 2018, vol. 196, pp. 368–372.

    Article  CAS  Google Scholar 

  51. Y. Dai and B. Yang: Vacuum Metallurgy of Nonferrous Metals, Metallurgical Industry Press, 2009.

Download references

Acknowledgments

This work was supported by National Science Foundation of China (No. 51734006), Science and Technological Talent Cultivation Plan of Yunnan Province, China (No. 2017HB009), the Cultivating Plan Program for the Leader in Science and Technology of Yunnan Province under Grant (No. 014HA003), and the Program for Nonferrous Metals Vacuum Metallurgy Innovation Team of Ministry of Science and Technology under Grant (No. 2014RA4018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoqiang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 15, 2020; accepted February 26, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Xu, B., Yang, B. et al. Pb Recovery of Waste Cathode Ray Tube Funnel Glass by PbO Vapor Vacuum Reduction (PVVR) Process and the Feasibility of Luminescent Glass Production. Metall Mater Trans B 52, 2294–2306 (2021). https://doi.org/10.1007/s11663-021-02139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02139-0

Navigation