Skip to main content
Log in

Mapping the Electronic Transference Number of Cryolitic Melts

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Contrary to the ionic conductivity, the electronic conductivity of cryolitic melts, which can be up to 30 pct of the total conductivity in industrial electrolysis cells, remains largely unknown as very few experimental data are reported in the literature. The aim of this work is to fill this gap by providing reliable estimations of the electronic conductivity as a function of both cryolitic ratio and temperature in the range of interest for the aluminum production industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. J. Thonstad, P. Fellner, G.M. Haarberg, J. Hives, H. Kvarde, A. Sterten, Aluminium Electrolysis: Fundamentals of the Hall-Heroult Process (Aluminium-Verlag, Düsseldorf, 2001).

    Google Scholar 

  2. A.E. Gheribi, M. Salanne, D. Zanghi, K. Machado, C. Bessada, P. Chartrand, Ind. Eng. Chem. Res. 59, 13305–13314 (2020)

    Article  CAS  Google Scholar 

  3. P. Fellner, K. Grjotheim, H. Kvande, JOM 37, 29–32 (1985)

    Article  CAS  Google Scholar 

  4. X. Wang, R.D. Peterson, and A.T. Tabereaux: in Light. Met. (Warrendale, Pa.), 1992, pp. 481–88.

  5. J. Hıves, J. Thonstad, A. Sterten, P. Fellner, Metall. Mater. Trans. B 27, 255–261 (1996)

    Article  Google Scholar 

  6. A.E. Gheribi, K. Machado, D. Zanghi, C. Bessada, M. Salanne, P. Chartrand, Electrochim. Acta 274, 266–273 (2018)

    Article  CAS  Google Scholar 

  7. A.E. Gheribi, A. Serva, M. Salanne, K. Machado, D. Zanghi, C. Bessada, P. Chartrand, ACS Omega 4, 8022–8030 (2019)

    Article  CAS  Google Scholar 

  8. A.T. Tabereaux and R.D. Peterson: in Treatise Process Metall., vol. 3, Elsevier Ltd., 2014, pp. 839–917.

  9. Y. Zhang, J. Yu, B. Gao, Y. Liu, X. Hu, Z. Shi, Z. Wang, Met. Mater. Trans. B 47, 1296–1301 (2016)

    Article  CAS  Google Scholar 

  10. J. Thonstad, Can. J. Chem. 43, 3429–3432 (1965)

    Article  CAS  Google Scholar 

  11. R. Odegard, Metall. Trans. B 19B, 441–47 (1988)

    Article  CAS  Google Scholar 

  12. V. Danielik, P. Fellner, A. Sykorova, J. Thonstad. Met. Mater. Trans. B 41B, 430–436 (2010)

    Article  CAS  Google Scholar 

  13. A.S. Dworkin, H.R. Bronstein, M.A. Bredig, J. Phys. Chem. 70, 2384–2388 (1966)

    Article  CAS  Google Scholar 

  14. H.R. Bronstein, M.A. Bredig, J. Am. Chem. Soc. 80, 2077–2081 (1958)

    Article  CAS  Google Scholar 

  15. H. Bronstein, M. Bredig, J. Phys. Chem. 65, 1220–1224 (1961)

    Article  CAS  Google Scholar 

  16. S. Sotier, H. Ehm, and F. Maidl: J. Non-Crystalline Solids, 1984, vol. 61–62 of Proceedings of the Fifth International Conference on Liquid and Amorphous Metals, pp. 95–100.

  17. G. Haarberg, K. Osen, J. Egan, H. Heyer, and W. Freyland: Berichte der Bunsengesellschaft fu¨r physikalische Chemie, 1988, vol. 92, pp. 139–47.

  18. G.M. Haarberg, K.S. Osen, J.J. Egan, ECS PV 1987–7, 235–243 (1987)

    Article  Google Scholar 

  19. G.M. Haarberg, J. Thonstad, J.J. Egan, R. Oblakowski, and S. Pietrzyk: in Light. Met. (Warrendale, Pa.), 1996, pp. 221–25.

  20. G. Rouaut, A.E. Gheribi, P. Chartrand, J. Fluor. Chem. 237, 109597 (2020)

    Article  CAS  Google Scholar 

  21. I. Katz, S.A. Rice, J. Am. Chem. Soc. 94, 4824–4829 (1972)

    Article  CAS  Google Scholar 

  22. K. Yoshida, E.W. Dewing, Met. Trans. 3, 1817–1821 (1972)

    Article  CAS  Google Scholar 

  23. A.M. Arthur, Met. Trans. 5, 1225–1230 (1974)

    Article  CAS  Google Scholar 

  24. R. Odegard, A. Sterten, J. Thonstad. Met. Trans. B 19B, 449–457 (1988)

    Article  CAS  Google Scholar 

  25. C.W. Bale, E. Belisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melancon et al., Calphad 55, 1–19 (2016)

    Article  CAS  Google Scholar 

  26. H. Ohno, K. Furukawa, R. Takagi, K. Igarashi, J. Mochinaga, J. Chem. Soc. Faraday Trans. 79, 463–471 (1983)

    Article  CAS  Google Scholar 

  27. L.E. Gonzalez, D.J. Gonzalez, M. Silbert, Phys. B 168, 39–44 (1991)

    Article  CAS  Google Scholar 

Download references

This research was supported by funds from the Natural Sciences and Engineering Research Council of Canada (NSERC), Alcoa, Hydro Aluminum, Constellium, Rio Tinto Aluminum, and the FRQNT. Computations were made on clusters managed by Calcul-Québec and Compute Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aïmen E. Gheribi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 14, 2020, accepted 23 January, 2021.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheribi, A.E., Rouaut, G. & Chartrand, P. Mapping the Electronic Transference Number of Cryolitic Melts. Metall Mater Trans B 52, 586–589 (2021). https://doi.org/10.1007/s11663-021-02093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02093-x

Navigation