Skip to main content

Numerical Simulation of Laminar-Turbulent Transition in Magnetohydrodynamic Convection in an Electromagnetically Levitated Molten Droplet of Cu-Co Alloys Under a Static Magnetic Field


Direct numerical simulations were carried out to investigate three-dimensional, unsteady magnetohydrodynamic (MHD) convection in a spherical electromagnetically levitated molten Cu-Co droplet with a diameter of 5 mm under different strengths of the static magnetic field. The strength of the static magnetic field ranged from 0 to 3 T. MHD convection under lower static magnetic fields presented turbulent flow. The velocities in the levitated droplet decreased with increasing strength of the static magnetic field. At more than 1.5 T, the convective flow pattern became axisymmetric and the turbulent energy reached almost zero, i.e., MHD convection presented laminar flow. Comparisons of the present numerical results with past experimental results demonstrated that the marked change in phase separation structures in undercooled Cu-Co alloys at 1.0 to 1.5 T was closely related to the laminar-turbulent transition of MHD convection in the levitated droplet.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1. Y. Nakagawa: Acta Metall., 1958, vol. 6, pp. 704-11.

    CAS  Article  Google Scholar 

  2. 2. M. G. M. Miranda, E. Estévez-Rams, G. Martínez and M. N. Baibich: Physical Review B, 2003, vol. 68, 014434.

    Article  Google Scholar 

  3. 3. W. Yang, S. H. Chen, H. Yu, S. Li, F. Liu and G. C. Yang: Appl. Phys. A, 2012, vol. 109, pp. 665-71.

    CAS  Article  Google Scholar 

  4. 4. L. Ratke and S. Diefenbach: Materials Science and Engineering: R: Reports, 1995, vol. 15, pp. 263-347.

    Article  Google Scholar 

  5. 5. B. J. Park, Y. M. Chen and T. Ohkubo: Intermetallics, 2009, vol. 17, pp. 958-61.

    CAS  Article  Google Scholar 

  6. 6. C. P. Wang, X. J. Liu, I. Ohnuma, R. Kainuma and K. Ishida: Science, 2002, vol. 297, pp. 990-93.

    CAS  Article  Google Scholar 

  7. 7. M. Kolbe and J. R. Gao: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 509-13.

    Article  Google Scholar 

  8. 8. Y. K. Zhang, J. Gao, D. Nagamatsu, T. Fukuda, H. Yasuda, M. Kolbe and J. C. He: Scripta Mater., 2008, vol. 59, pp. 1002-05.

    CAS  Article  Google Scholar 

  9. 9. J. Gao, Y. K. Zhang, T. Fukuda, H. Yasuda, M. Kolbe and J. He: J. Phys. Conf. Ser., 2009, vol. 144, 012117.

    Article  Google Scholar 

  10. 10. Y. Zhang, J. Gao, H. Yasuda, M. Kolbe and G. Wilde: Scripta Mater., 2014, vol. 82, pp. 5-8.

    CAS  Article  Google Scholar 

  11. 11. D. Zhao and J. Gao: Philos. Trans. Royal Soc. A, 2019, vol. 377, 20180207.

    CAS  Article  Google Scholar 

  12. 12. K. Sugioka, T. Inoue, T. Kitahara, R. Kurosawa, M. Kubo, T. Tsukada, M. Uchikoshi and H. Fukuyama: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1439-45.

    Article  Google Scholar 

  13. 13. T. Kitahara, K. Tanada, S. Ueno, K. Sugioka, M. Kubo, T. Tsukada, M. Uchikoshi and H. Fukuyama: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2706-12.

    Article  Google Scholar 

  14. 14. J. Lee, D. M. Matson, S. Binder, M. Kolbe, D. Herlach and R. W. Hyers: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1018-23.

    CAS  Article  Google Scholar 

  15. 15. R. W. Hyers, G. Trapaga and B. Abedian: Metall. Mater. Trans. B, 2003, vol. 34, pp. 29-36.

    Article  Google Scholar 

  16. 16. E. Shoji, S. Isogai, R. Suzuki, M. Kubo, T. Tsukada, T. Kai, T. Shinohara, Y. Matsumoto and H. Fukuyama: Scripta Mater., 2020, vol. 175, pp. 29-32.

    CAS  Article  Google Scholar 

  17. 17. L. Feng and W.-Y. Shi: Int. J. Heat Mass Transf., 2016, vol. 101, pp. 629-36.

    Article  Google Scholar 

  18. 18. L. Feng and W.-Y. Shi: Int. J. Heat Mass Transf., 2020, vol. 163, 120501.

    Article  Google Scholar 

  19. 19. X. Cai, H. P. Wang, M. X. Li, Y. H. Wu and B. Wei: Metall. Mater. Trans. B, 2019, vol. 50, pp. 688-99.

    CAS  Article  Google Scholar 

  20. E. B. Baker, J. Nawer, X. Xiao and D. M. Matson: npj Microgravity, 2020, vol. 6, 9.

  21. 21. T. Tsukada, K. Sugioka, T. Tsutsumino, H. Fukuyama and H. Kobatake: Int. J. Heat Mass Transf., 2009, vol. 52, pp. 5152-57.

    CAS  Article  Google Scholar 

  22. 22. L. Feng, W. Y. Shi, E. Shoji, M. Kubo and T. Tsukada: Int. J. Heat Mass Transf., 2019, vol. 130, pp. 787-96.

    CAS  Article  Google Scholar 

  23. 23. R. W. Hyers: Meas. Sci. Technol., 2005, vol. 16, pp. 394-401.

    CAS  Article  Google Scholar 

  24. 24. M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz and W. A. Wakeham: J. Phys. Chem. Ref. Data, 2010, vol. 39, 033105.

    Article  Google Scholar 

  25. P. F. Paradis, T. Ishikawa and N. Koike: High Temp.-High Press., 2008, vol. 37, pp. 5-11.

  26. 26. R. M. Khusnutdinoff, A. V. Mokshin, A. L. Beltyukov and N. V. Olyanina: Phys. Chem. Liq., 2018, vol. 56, pp. 561-70.

    CAS  Article  Google Scholar 

  27. 27. F. Guo, T. Lu, J. Qin, H. Zheng and X. Tian: Phys. B, 2012, vol. 407, pp. 4108-13.

    CAS  Article  Google Scholar 

  28. V. Bojarevics, S. Easter, A. Roy and K. Pericleous, In the 6th Int. Conf. on the Electromagnetic Processing of Materials, (Forschungszentrum Dresden-Rossendorf: Dresden, 2009), pp 699–702.

Download references


This study was supported by the Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant and JSPS Grant-in-Aid for Scientific Research (B) 19H02493. The numerical simulations were performed on the Supercomputer system “AFI-NITY” at the Advanced Fluid Information Research Center, Institute of Fluid Science, Tohoku University. We would also like to thank Dr. Lin Feng (Chongqing University, China) for his help in creating the finite volume grids used for the fluid dynamics simulation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Eita Shoji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 28, 2020; accepted December 18, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shoji, E., Tanada, K., Takahashi, R. et al. Numerical Simulation of Laminar-Turbulent Transition in Magnetohydrodynamic Convection in an Electromagnetically Levitated Molten Droplet of Cu-Co Alloys Under a Static Magnetic Field. Metall Mater Trans B 52, 896–902 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: