Skip to main content
Log in

A Thermo-metallurgical Model for Laser Surface Engineering Treatment of Nodular Cast Iron

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Heat treatments are frequently used to modify the microstructure of cast irons according to experimental parameters. Among these, laser surface engineering (LSE) has become relevant for being a highly localized treatment with rapid heating and cooling of the irradiated area resulting in minimal distortion of the workpiece. This work presents and experimentally validates a thermo-metallurgical model able to predict the phase transformations occurring during the LSE treatment of nodular cast iron when it is subjected to different laser beam powers and scanning velocities. For this purpose, an experimental characterization of the thermal history and final microstructure is performed for several operating scenarios. In particular, significant changes in the microstructure can be seen at high powers and low scanning velocity where the matrix is transformed into ledeburite and martensite. The final phase volume fractions predicted by the proposed model along the depth of the sample are compared with the corresponding experimental measurements. The results obtained in the simulation are in good agreement with the experimental measurements. This work highlights the use of our model to be systematically applied for the design and optimization of LSE treatments on cast irons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. 1 J.R. Davis: ASM specialty handbook: Cast irons, ASM International, USA, 1996.

    Google Scholar 

  2. 2 H.W. Bergmann: Surf. Eng., 1985, vol. 1, pp. 137-55.

    Article  Google Scholar 

  3. 3 C.H. Chen, C.P. Ju, and J.M. Rigsbee: Mater. Sci. Technol. (United Kingdom), 1988, vol. 4, pp. 161-6.

    Article  CAS  Google Scholar 

  4. 4 C.P. Ju, C.H. Chen, and J.M. Rigsbee: Mater. Sci. Technol. (United Kingdom), 1988, vol. 4, pp. 167-72.

    Article  CAS  Google Scholar 

  5. 5 K.F. Alabeedi, J.H. Abboud, and K.Y. Benyounis: Wear, 2009, vol. 266, pp. 925-33.

    Article  CAS  Google Scholar 

  6. 6 S.P. Gadag, M.N. Srinivasan, and B.L. Mordike: Mater. Sci. Eng. A, 1995, vol. 196, pp. 145-54.

    Article  Google Scholar 

  7. 7 A. Roy and I. Manna: Opt. Lasers Eng., 2000, vol. 34, pp. 369-83.

    Article  Google Scholar 

  8. 8 J. Grum and R. Šturm: Mater. Charact., 1996, vol. 37, pp. 81-88.

    Article  CAS  Google Scholar 

  9. 9 J. Grum and R. Šturm: Appl. Surf. Sci., 2002, vol. 187, pp. 116-23.

    Article  CAS  Google Scholar 

  10. 10 N. Pagano, V. Angelini, L. Ceschini, and G. Campana: Procedia CIRP, 2016, vol. 41, pp. 987-91.

    Article  Google Scholar 

  11. 11 A. Urrutia, D.J. Celentano, and D.R. Gunasegaram: Metals (Basel)., 2017, vol. 7, pp. 1-17.

    Article  Google Scholar 

  12. 12 A.D. Boccardo, P.M. Dardati, L.A. Godoy, and J.J. Lopensino: Lat. Am. J. Solids. Stru., 2018, vol. 15, e50.

    Google Scholar 

  13. 13 P.A. Molian and A.K. Mathur: J. Eng. Mater. Technol. Trans. ASME, 1986, vol. 108, pp. 233-39.

    Article  CAS  Google Scholar 

  14. 14 R. Singh, M.J. Alberts, and S.N. Melkote: J. Mach. Tools Manuf., 2008, vol. 48, pp. 994-1004.

    Article  Google Scholar 

  15. 15 Y. Li, Z. Zhang, C. Zhao, X. Hao, N. Dong, W. Yin, and Z. Pang: Appl. Therm. Eng., 2020, vol. 174, 115276.

    Article  Google Scholar 

  16. 16 M. Matthews, J. Trapp, G. Guss, and A. Rubenchik: J. Laser Appl., 2018, vol. 30, 032302.

    Article  Google Scholar 

  17. 17 R.M. Ghergu, J. Sertucha, Y. Thebault and J. Lacaze: ISIJ Int., 2012, vol. 52, pp. 2036-41.

    Article  CAS  Google Scholar 

  18. 18 A.D. Boccardo, P.M. Dardati, D.J. Celentano, L.A. Godoy, M. Górny, and E. Tyrała: Metall. Mater. Trans. B 2016, vol. 47, pp. 566-75.

    Article  CAS  Google Scholar 

  19. 19 A.D. Boccardo, P.M. Dardati, D.J. Celentano, and L.A. Godoy: Finite Elem. Anal. Des., 2017, vol. 134, pp. 82-91.

    Article  Google Scholar 

  20. 20 H. Bhadeshia: Bainite in steels, 3rd ed., Maney Publishing, UK, 2015, p. 142.

    Google Scholar 

  21. 21 F.D. Carazo, P.M. Dardati, D.J. Celentano, and L.A. Godoy: Metall. Mater. Trans. B 2012B, vol. 43, pp. 1579-95.

    Article  Google Scholar 

  22. F.D. Carazo, L.N. García, and D.J. Celentano: Metals (Basel)., 2018, vol. 8, 550, pp. 1-15.

  23. 23 W. Kapturkiewicz, A. Burbelko, and M. Górny: ISIJ International, 2014, vol. 54, pp. 288-93.

    Article  CAS  Google Scholar 

  24. A.E. Nehrenberg: Met. Technol. (N.Y.), 1946, vol XIII, pp. 33-43.

  25. 25 S.A. Khan and H.K.D.H. Bhadeshia: Mater. Sci. Eng., 1990, vol. A129, pp. 257-72.

    Article  Google Scholar 

  26. 26 D. Janicki, J. Górka, W. Kwaśny, W. Pakieła, and K. Matus: Materials, 2020, vol. 13, 1174.

    Article  CAS  Google Scholar 

  27. N. Catalán: Analysis of the effect of laser surface treatment on the microstructure, hardness and wear of a ferritic nodular cast iron (in Spanish), MsD Thesis, Pontificia Universidad Católica de Chile, Chile, 2020.

  28. 28 H. Zeng, R. Yan, W. Wang, H. Zhang, J. Yan, and F. Peng: J. Adv. Manuf. Technol., 2020, vol. 109, 2481-90.

    Article  Google Scholar 

Download references

Acknowledgments

A. Boccardo is a member of the research staff of CONICET and he acknowledges the financial support received of the ASUTNCO0007785 Grant from Universidad Tecnológica Nacional. D. Celentano thanks the financial support of ANID-Chile through the project Grant FONDECYT 1180591. E. Ramos-Moore thanks the financial support of ANID-Chile through the project Grant FONDECYT 1180564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Boccardo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 2, 2020; accepted December 18, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boccardo, A.D., Catalán, N., Celentano, D.J. et al. A Thermo-metallurgical Model for Laser Surface Engineering Treatment of Nodular Cast Iron. Metall Mater Trans B 52, 854–870 (2021). https://doi.org/10.1007/s11663-021-02058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02058-0

Navigation