Skip to main content
Log in

Element-Free Galerkin Method Modeling of Thermo-Elastic-Plastic Behavior for Continuous Casting Round Billet

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

When solving the coupled thermal-mechanical problem of the metal solidification, the mesh-based numerical methods suffer from the inconsistency of mesh lines and curved boundaries. Furthermore, the mesh should be continually reconstructed to comply with the interface when dealing with the moving boundary such as phase transition, which brings great difficulties to the numerical calculation. Based on the plane stress assumption, the present work establishes a two-dimensional thermo-elastic-plastic calculation model for continuous casting round billets using the Element-Free Galerkin method, and the correction scheme of elastoplastic transition region has been explored. The results show that the correction scheme has a slight effect on magnitude of the equivalent stress and no impact on the subsequent plastic deformation zone. The elastoplastic transition region of shell surface appears in the range of 100 to 200 mm below the meniscus, and the averaged plastic stress is about 2.27 times of the elastic stress at the mold outlet. Near the interface region of liquid–solid phase exhibits an elastic deformation behavior, while far from the interface region appears plastic deformation in which the elastic stress remains invariable. The Element-Free Galerkin method is discretized by a series of arbitrary nodes, which exhibits high accuracy and great flexibility in dealing with moving interface problems. It provides a powerful approach to calculate and analyze the heat transfer/mechanical behavior with complex geometric boundaries such as round billet, chamfered billet, and beam blank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Du, X. Wang, X. Han, J. Xu, and M. Yao: Ironmak. Steelmak., 2018, vol. 45, pp. 350-55.

    Article  CAS  Google Scholar 

  2. S. Koric, L.C. Hibbeler, R. Liu, and B.G. Thomas: Numer. Heat Transfer B, 2010, vol. 58, pp. 371-92.

    Article  CAS  Google Scholar 

  3. S. Koric, and B.G. Thomas: Int. J. Numer. Methods Eng., 2006, vol. 66, pp. 1955-89.

    Article  Google Scholar 

  4. G.R. Liu: Mesh Free Methods Moving Beyond the Finite Element Method, 1st ed., CRC Press LLC, Boca Raton, FL, 2002, pp. 53-265.

    Book  Google Scholar 

  5. G.R. Liu and Y.T. Gu: An Introduction to Meshfree Methods and Their Programming, 1st ed., Springer, Dordrecht, 2005, pp. 54-111.

    Google Scholar 

  6. M. Alizadeh, S.A.J. Jahromi, and S.B. Nasihatkon: ISIJ Int., 2010, vol. 50, pp. 411-17.

    Article  CAS  Google Scholar 

  7. R. Vertnik, and B. Šarler: Int. J. Cast. Metals Res., 2009, vol. 22, pp. 311-13.

    Article  CAS  Google Scholar 

  8. R. Vertnik, and B. Šarler: Eng. Anal. Bound. Elem., 2014, vol. 45, pp. 45-61.

    Article  Google Scholar 

  9. L. Zhang, Y.M. Rong, H.F. Shen, and T.Y. Huang: J. Mater. Process. Technol., 2007, vol. 192, pp. 511-17.

    Article  Google Scholar 

  10. L. Zhang, Y.M. Rong, H.F. Shen, and T.Y. Huang: Int. J. Intell. Syst. Technol. Appl., 2008, vol. 4, pp. 177-87.

    Google Scholar 

  11. J.C. Álvarez-Hostos, A.D. Bencomo, and E.S. Puchi-Cabrera: J. Therm. Stresses, 2018, vol. 41, pp. 160-81.

    Article  Google Scholar 

  12. L.Q. Cai, X.D. Wang, N. Wang, and M. Yao: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 236-46.

    Article  Google Scholar 

  13. L.Q. Cai, X.D. Wang, M. Yao, and Y. Liu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1113-26.

    Article  Google Scholar 

  14. R. Vaghefi, A. Nayebi, and M.R. Hematiyan: Acta Mech., 2018, vol. 229, pp. 4375-92.

    Article  Google Scholar 

  15. L. Zhang, H.F. Shen, Y.M. Rong, and T.Y. Huang: Mater. Sci. Eng. A, 2007, vol. 466A, pp. 71-78.

    Article  Google Scholar 

  16. J.C. Álvarez-Hostos, E.S. Puchi-Cabrera, and A.D. Bencomo: Steel Res. Int., 2017, vol. 88, pp. 1600019.

    Article  Google Scholar 

  17. J.C. Álvarez-Hostos, A.D. Bencomo, E.S. Puchi-Cabrera, and I.M. Figueroa-Poleo: Int. J. Cast. Metals Res., 2018, vol. 31, pp. 47-55.

    Article  Google Scholar 

  18. R. Vaghefi, M.R. Hematiyan, A. Nayebi, and A. Khosravifard: Eng. Anal. Bound. Elem., 2018, vol. 89, pp. 10-24.

    Article  Google Scholar 

  19. B. Lally, L. Biegler, and H. Henein: Mater. Trans. B, 1990, vol. 21, pp. 761-770.

    Article  Google Scholar 

  20. H.B. Yin, M. Yao, and D.C. Fang: ISIJ Int., 2006, vol. 46, pp. 539-45.

    Article  Google Scholar 

  21. K. Kim, T. Yeo, K.H. Oh, and D.N. Lee: ISIJ Int., 1996, vol. 36, pp. 284-89.

    Article  CAS  Google Scholar 

  22. A. Moitra, and B.G. Thomas: Steelmaking Conf. Proc., ISS/AIME, 1993, vol. 76, pp. 657-67.

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China [51974056/51474047/51704073]; the Fundamental Research Funds for the Central Universities and the Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province) is also gratefully acknowledged. Part of this work was performed using computational resources from Supercomputing Center of Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 13, 2020; accepted December 15, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Wang, X., Wei, J. et al. Element-Free Galerkin Method Modeling of Thermo-Elastic-Plastic Behavior for Continuous Casting Round Billet. Metall Mater Trans B 52, 804–814 (2021). https://doi.org/10.1007/s11663-020-02054-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02054-w

Navigation