Skip to main content
Log in

Mechanism of Enhancing Phosphorus Removal from Metallurgical Grade Silicon by Si-Fe-Ti Phase Reconstruction

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Metallurgical grade silicon (MG-Si) contains iron (Fe) as its main impurity, where phosphorus (P) is occasionally enriched in the FeSi2Ti phase. Based on this phenomenon, the precipitation superiority of P in the silicon-iron-titanium (Si-Fe-Ti) phase was verified by Si-5Fe and Si-3Fe-2Ti (wt pct) alloy refining for MG-Si. Microscopic characterization showed that P enrichment in the Si-Fe-Ti phase was more than in the Si-Fe phase. Thermodynamically, FeTiP phase is more stable than Fe3P. Dynamically, Fe and Ti will increase the solubility of each other in the melt because the activity interaction coefficient of Fe and Ti is 5.7027. Therefore, during the solidification of the Si-Fe-Ti melt, the enhanced precipitation of Fe and Ti promotes the formation and co-precipitation of the Si-Fe-Ti and FeTiP phases. With acid leaching, the phosphorus removal efficiencies from MG-Si, the Si-Fe alloy, and Si-Fe-Ti alloy were 12.33, 39.15, and 71.20 pct, respectively, which again verify the distribution characteristics of P in different samples and its mechanistic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. D. Thurmond and M. Kowalchik: Bell Labs Tech. J., 2013, vol. 39, pp. 169-204.

    Article  Google Scholar 

  2. K. Suzuki, K. Sakaguchi, T. Nakagiri and N. Sano: J. Jpn. Inst. Met, 1990, vol. 54, pp. 161-167.

    Article  CAS  Google Scholar 

  3. N. Yuge; K. Hanazawa, K. Nishikawa and H. Terashima: J. Jpn. Inst. Met, 1997, vol. 61, pp. 1086-1093.

    Article  CAS  Google Scholar 

  4. C. Zhang, K. Wei, D. Zheng, W. Ma and Y. Dai: Vacuum, 2017, vol. 146, pp. 159-163. 

    Article  CAS  Google Scholar 

  5. Y. Meteleva-Fischer, Y. X. Yang, R. Boom, B. Kraaijveld and H. Kuntzel: JOM, 2012, vol. 64, pp. 957-967.

    Article  CAS  Google Scholar 

  6. S. Ueda, K. Morita and N. Sano: Metal. Mat. Trans. B, 1997, vol. 28, pp. 1151-1155.

    Article  CAS  Google Scholar 

  7. T. Shimpo, T. Yoshikawa and K. Morita: Metal. Mat. Trans. B, 2004, vol. 35, pp. 277-284.

    Article  CAS  Google Scholar 

  8. W. Yan, Y. Yang, W. Chen, M. Barati and A. Mclean: Vacuum, 2016, vol. 135, pp. 101-108.

    Article  Google Scholar 

  9. Z. Ge, Z. Wang, L. Sun, K. Xie and W. Ma: Chinese Journal of Process Engineering, 2016, vol. 16, pp. 1002-1008.

    CAS  Google Scholar 

  10. M. D. Johnston and M. Barati: Sep. Purif. Technol., 2013, vol. 107, pp. 129-134.

    Article  CAS  Google Scholar 

  11. J. Li, Z. Guo, J. Li and L. Yu: Silicon, 2015, vol. 7, pp. 239-246.

    Article  CAS  Google Scholar 

  12. L. Hu, Z. Wang, X. Gong, Z. Guo and H. Zhang: Sep. Purif. Technol., 2013, vol. 118, pp. 699-703.

    Article  CAS  Google Scholar 

  13. S. Esfahani and M. Barati: Met. Mater. Int., 2011, vol. 17, pp. 823-829.

    Article  CAS  Google Scholar 

  14. S. Esfahani and M. Barati: Met. Mater. Int., 2011, vol. 17, pp. 1009-1015.

    Article  CAS  Google Scholar 

  15. A. M. Mitrašinović and T. A. Utigard: Chem. Phys. Lett., 2011, vol. 515, pp. 72-77.

    Article  Google Scholar 

  16. A. M. Mitrašinović and T. A. Utigard: Silicon, 2009, vol. 1, pp. 239-248.

    Article  Google Scholar 

  17. J. C. Anglézio, C. Servant and F. Dubrous: J. Mat. Res., 1990, vol. 5, pp. 1894-1899.

    Article  Google Scholar 

  18. H. Lu, K. Wei, W. Ma, K. Xie, J. Wu and Y. Lei: Metal. Mat. Trans. B, 2017, vol. 48, pp. 2768-2780.

    Article  CAS  Google Scholar 

  19. F. Margarido, M. O. Figueiredo, A. M. Queiroz and J. P. Martins: Ind. Eng. Chem. Res., 1997, vol. 36, pp. 5291-5295.

    Article  CAS  Google Scholar 

  20. H. Lai, L. Huang, C. Lu, M. Fang, W. Ma, P. Xing, J. Li and X. Luo: Hydrometallurgy, 2015, vol. 156, pp. 173-181.

    Article  CAS  Google Scholar 

  21. H. Lai, Z. Sheng, J. Li, P. Xing and X. Luo: Sep. Purif. Technol., 2017, vol. 191, pp. 257-269.

    Article  Google Scholar 

  22. J. Li, B. Ban, Y. Li, X. Bai, T. Zhang and J. Chen: Silicon, 2017, vol. 9, pp. 77-83.

    Article  CAS  Google Scholar 

  23. J. Li, H. Tang, Z. Guo and Y. Lin: ICMREE, Chengdu, China, 2014.

    Google Scholar 

  24. C.W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, A. E. Gheribi, K. Hack, I. H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer and M. A.Van Ende: Calphad, 2016, vol. 55, pp. 1-19.

    Article  CAS  Google Scholar 

  25. H. S. Kim, Y. Kobayashi and K. Nagai: J. MATER. RES., 2006, vol. 21, pp. 1399–1408. 

    Article  CAS  Google Scholar 

  26. F. Weitzer, J. C. Schuster, M. Naka, F. Stein and M. Palm: Intermetallics, 2008, vol. 16, pp. 273-282.

    Article  CAS  Google Scholar 

  27. H. Erhart, H. J. Grabke and R. Möller: Archiv für das senhüttenwesen, 1983, vol. 54, pp. 285-289.

    Article  CAS  Google Scholar 

  28. H. Ohtani, N. Hanaya, M. Hasebe, S. Teraoka and M. Abe: Calphad, 2006, vol. 30, pp. 147–158.

    Article  CAS  Google Scholar 

  29. O. Toma, M. Dzevenko, A. Oliynyk, and Y. Lomnytska: Open Chem., 2013, vol. 11

  30. D. Tao: Thermochim. Acta, 2000, vol. 363, pp. 105-113.

    Article  CAS  Google Scholar 

  31. D. Tao: Acta Metall. Sin-Engl., 2001, vol. 14, pp. 241-247.

    CAS  Google Scholar 

  32. K. Liu, J. Wu, W. Ma, B. Yang and Y. Dai: J. Min. Metall. B, 2014, vol. 50, pp. 171-176.

    Article  Google Scholar 

  33. T. Iida and R. I. L. Guthrie: The physical properties of liquid metal, Oxford Univ., Clarendon Press, Oxford, 1988, pp. 20-36.

    Google Scholar 

  34. R. R. Hultgren: Selected Values of the Thermodynamic Properties of Binary Alloy, American Society of Metals, Metals Park, OH, 1973, pp. 48-55.

    Google Scholar 

  35. B. Predel (2006) Landolt-Bornstein: Group IV: Physical Chemistry, vol. 12, Springer, Heidelberg, pp. 15-26.

    Google Scholar 

  36. IC Santos, AP Gonçalves, CS Santos, M Almeida, M Hafonso, and MJ Cruz (1990) Hydrometallurgy 23: 237-246

    Article  CAS  Google Scholar 

  37. X. Ma, J. Zhang, T. Wang and T. Li: Rare Metals, 2009, vol. 28, pp. 221-225.

    Article  CAS  Google Scholar 

  38. F. He, S. Zheng and C. Chen: Metal. Mater. Trans. B, 2012, vol. 43, pp. 1011-1018.

    Article  Google Scholar 

  39. R. Zeng, Y. Wang, J. Zhang, J. Xu, H. Li, X. Chen and D. Xing: Advanced Materials Research, 2012, vol. 549, pp. 428-431.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge that this study was supported by the National Natural Science Foundation of China (No.U1902219), the funding of the Yunnan Young and Middle-aged Academic and Technical Leader Reserve Talent Project (No. 2018HB009), and the Major Science and Technology Projects in Yunnan Province (No. 2019ZE007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuixian Wei or Wenhui Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 27, 2020; accepted October 31, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Li, S., Wen, J. et al. Mechanism of Enhancing Phosphorus Removal from Metallurgical Grade Silicon by Si-Fe-Ti Phase Reconstruction. Metall Mater Trans B 52, 625–632 (2021). https://doi.org/10.1007/s11663-020-02028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02028-y

Navigation