Skip to main content
Log in

CFD Modeling and Analysis of Particle Size Reduction and Its Effect on Blast Furnace Ironmaking

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Particle size reduction inevitably occurs inside ironmaking blast furnaces (BFs) but is not studied under BF conditions due to the lack of an effective tool. This paper simulates this phenomenon inside a 5000-m3 commercial BF using a recently developed three-dimensional computational fluid dynamics (CFD) process model. In particular, the sinter reduction degradation and coke gasification are modeled for considering the size reduction. By incorporating this information in the BF model, the in-furnace states and global performance are evaluated with respect to sinter reduction degradation index (RDI) under different conditions, e.g., keeping a constant blast rate or gas pressure drop. The results show that with increasing RDI, the bed permeability deteriorates, and there exists a critical value of RDI beyond which the decreased bed permeability leads to a significant drop in productivity for a given gas pressure drop. However, this problem can be mitigated substantially by charging more coke particles at the furnace periphery under the conditions considered. The proposed approach offers an extended capability to model and control BF operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. 1. I. F. Kurunov, Metallurgist, 2012, vol. 56, pp. 241-46.

    CAS  Google Scholar 

  2. 2. M. Geerdes, R. Chaigneau and I. Kurunov: Modern blast furnace ironmaking: an introduction. 3rd ed. (IOS Press BV, Amsterdam, the Netherlands, 2015).

    Google Scholar 

  3. 3. T. Takada, H. Soma, T. Irita, E. Kamisaka, H. Kimura, M. Isoyama and A. Suzawa, T. Iron Steel I. Jpn., 1986, vol. 26, pp. 710-16.

    CAS  Google Scholar 

  4. 4. Y. Iwanaga, Tetsu To Hagane, 1982, vol. 68, pp. 740-49.

    CAS  Google Scholar 

  5. 5. R. Nakajima, T. Sumigama, K. Wakimoto, S. Nagano, H. Kawata and M. Sakurai, Tetsu To Hagane, 1987, vol. 73, pp. 1964-71.

    CAS  Google Scholar 

  6. 6. S. L. Wu, X. Q. Liu, Q. Zhou, J. Xu and C. S. Liu, J. Iron Steel Res. Int., 2011, vol. 18, pp. 20-24.

    Google Scholar 

  7. 7. M. Mizutani, T. Nishimura, T. Orimoto, K. Higuchi, S. Nomura, K. Saito and E. Kasai, ISIJ Int., 2017, vol. 57, pp. 1499-508.

    CAS  Google Scholar 

  8. 8. M. Mizutani, T. Nishimura, T. Orimoto, K. Higushi, S. Nomura, K. Saito and E. Kasai, ISIJ Int., 2018, vol. 58, pp. 1761-67.

    Google Scholar 

  9. 9. X. Zhang, J. L. Zhang, Z. W. Hu, H. B. Zuo and H. W. Guo, J. Iron Steel Res. Int., 2010, vol. 17, pp. 7-12.

    Google Scholar 

  10. 10. Z. D. Lu, H. Z. Gu, L. K. Chen, D. L. Liu, Y. D. Yang and A. McLean, Ironmak. Steelmak., 2019, vol. 46, pp. 618–24.

    CAS  Google Scholar 

  11. 11. J. Yagi, ISIJ Int., 1993, vol. 33, pp. 619-39.

    CAS  Google Scholar 

  12. 12. X. F. Dong, A. B. Yu, J. Yagi and P. Zulli, ISIJ Int., 2007, vol. 47, pp. 1553-70.

    CAS  Google Scholar 

  13. 13. T. Ariyama, S. Natsui, T. Kon, S. Ueda, S. Kikuchi and H. Nogami, ISIJ Int., 2014, vol. 54, pp. 1457-71.

    CAS  Google Scholar 

  14. 14. S. B. Kuang, Z. Y. Li and A. B. Yu, Steel Res. Int., 2018, vol. 89, p. 1700071.

    Google Scholar 

  15. 15. T. Okosun, A. K. Silaen and C. Q. Zhou, Steel Res. Int., 2019, vol. 90, p. 1900046.

    Google Scholar 

  16. 16. Z. Y. Zhou, H. P. Zhu, B. Wright, A. B. Yu and P. Zulli, Powder Technol., 2011, vol. 208, pp. 72-85.

    CAS  Google Scholar 

  17. 17. S. Natsui, R. Shibasaki, T. Kon, S. Ueda, R. Inoue and T. Ariyama, ISIJ Int., 2013, vol. 53, pp. 1770-78.

    CAS  Google Scholar 

  18. 18. W. J. Yang, Z. Y. Zhou, D. Pinson and A. B. Yu, Metall. Mater. Trans. B, 2015, vol. 46, pp. 977-92.

    Google Scholar 

  19. Q. F. Hou, S. B. Kuang, Z. Y. Li and A. B. Yu, Powder Technol., 2017, vol. 314, pp. 557–66.

    CAS  Google Scholar 

  20. S. Natsui, S. Ishihara, T. Kon, K.-I. Ohno and H. Nogami, Chem. Eng. J., 2020, vol. 392, p. 123643.

    CAS  Google Scholar 

  21. Q. F. Hou, S. B. Kuang and A. B. Yu, Fuel Process. Technol., 2020, vol. 202, p. 106369.

    CAS  Google Scholar 

  22. Q.F. Hou, S.B. Kuang and A.B. Yu, Steel Res. Int. 2020. vol. 91, p. 2000071

    CAS  Google Scholar 

  23. 23. S. Natsui, A. Sawada, T. Kikuchi and R. O. Suzuki, ISIJ Int., 2018, vol. 58, pp. 1742-44.

    CAS  Google Scholar 

  24. 24. S. Natsui, A. Sawada, K. Terui, Y. Kashihara, T. Kikuchi and R. O. Suzuki, Chem. Eng. Sci., 2018, vol. 175, pp. 25-39.

    CAS  Google Scholar 

  25. K. Kurita, Y. Iwanaga, M. Motoshige and Y. Hatakeyama, T. Iron Steel I. Jpn., 1985, vol. 25, p. B-238.

    Google Scholar 

  26. 26. T. Sato, M. Sato, K. Takeda and T. Ariyama, Tetsu To Hagane, 2006, vol. 92, pp. 1006-14.

    CAS  Google Scholar 

  27. 27. L. L. Jiao, S. B. Kuang, A. B. Yu, Y. T. Li, X. M. Mao and H. Xu, Metall. Mater. Trans. B, 2020, vol. 51, pp. 258-75.

    Google Scholar 

  28. 28. P. R. Austin, H. Nogami and J. Yagi, ISIJ Int., 1997, vol. 37, pp. 458-67.

    CAS  Google Scholar 

  29. 29. K. Yang, S. Choi, J. Chung and J. Yagi, ISIJ Int., 2010, vol. 50, pp. 972-80.

    CAS  Google Scholar 

  30. 30. D. Fu, Y. Chen, Y. F. Zhao, J. D’Alessio, K. J. Ferron and C. Q. Zhou, Appl. Therm. Eng., 2014, vol. 66, pp. 298-308.

    CAS  Google Scholar 

  31. 31. P. Zhou, H. L. Li, P. Y. Shi and C. Q. Zhou, Appl. Therm. Eng., 2016, vol. 95, pp. 296-302.

    CAS  Google Scholar 

  32. 32. Z. Y. Zhou, A. B. Yu and P. Zulli, Prog. Comput. Fluid Dy., 2004, vol. 4, pp. 39-45.

    Google Scholar 

  33. 33. X. F. Dong, A. B. Yu, S. J. Chew and P. Zulli, Metall. Mater. Trans. B, 2010, vol. 41, pp. 330-49.

    CAS  Google Scholar 

  34. 34. S. B. Kuang, Z. Y. Li, D. L. Yan, Y. H. Qi and A. B. Yu, Miner. Eng., 2014, vol. 63, pp. 45-56.

    CAS  Google Scholar 

  35. 35. Z. Y. Li, S. B. Kuang, D. L. Yan, Y. H. Qi and A. B. Yu, Metall. Mater. Trans. B, 2017, vol. 48, pp. 602-18.

    Google Scholar 

  36. 36. S. J. Zhang, A. B. Yu, P. Zulli, B. Wright and P. Austin, Appl. Math. Model., 2002, vol. 26, pp. 141-54.

    Google Scholar 

  37. 37. G. X. Wang, S. J. Chew, A. B. Yu and P. Zulli, Metall. Mater. Trans. B, 1997, vol. 28, pp. 333-43.

    CAS  Google Scholar 

  38. 38. Z. L. Zhang, J. L. Meng, L. Guo and Z. C. Guo, Metall. Mater. Trans. B, 2016, vol. 47, pp. 467-84.

    Google Scholar 

  39. 39. Z. Y. Li, S. B. Kuang, A. Y. Yu, J. J. Gao, Y. H. Qi, D. L. Yan, Y. T. Li and X. M. Mao, Metall. Mater. Trans. B, 2018, vol. 49, pp. 1995-2010.

    Google Scholar 

  40. 40. D. Fernández-González, I. Ruiz-Bustinza, J. Mochón, C. González-Gasca and L. F. Verdeja, Min. Proc. Ext. Met. Rev., 2017, vol. 38, pp. 254-64.

    Google Scholar 

  41. 41. J. H. Liao, A. B. Yu and Y. S. Shen, Powder Technol, 2017, vol. 314, pp. 550-56.

    CAS  Google Scholar 

  42. 42. Z. Y. Li, S. B. Kuang, S. D. Liu, J. Q. Gan, A. B. Yu, Y. T. Li and X. M. Mao, Powder Technol., 2019, vol. 353, pp. 385-97.

    CAS  Google Scholar 

  43. 43. S. J. Zhang, A. B. Yu, P. Zulli, B. Wright and U. Tüzün, ISIJ Int., 1998, vol. 38, pp. 1311-19.

    CAS  Google Scholar 

  44. 44. Y. Omori: Blast furnace phenomena and modelling. Elsevier Applied Science, London, 1987.

    Google Scholar 

  45. 45. G. Usera, A. Vernet and J. Ferré, Flow Turbul. Combust., 2008, vol. 81, pp. 471-95.

    Google Scholar 

  46. 46. S. L. Wu and X. L. Wang: Iron and steel metallurgy (Ironmaking part). 4th ed. Metallurgical Industry Press Co., Ltd., Beijing, 2019.

    Google Scholar 

  47. 47. T. Inada, K. Takata, K. Takatani and T. Yamamoto, ISIJ Int., 2003, vol. 43, pp. 1003-10.

    CAS  Google Scholar 

  48. 48. I. Muchi, Trans. ISIJ, 1967, vol. 7, pp. 223-37.

    CAS  Google Scholar 

  49. 49. P. R. Austin, H. Nogami and J. Yagi, ISIJ Int., 1997, vol. 37, pp. 748-55.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Australian Research Council (ARC) (IH140100035), the Baosteel Australia Research and Development Center (BAJC) (BA16002), and the Natural Science Foundation of China (NSFC) (52034003) for the financial support of this work, and the National Computational Infrastructure (NCI) for the use of high-performance computational facilities, and CAFFA3D for making a useful code available for free use and adaptation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shibo Kuang or Aibing Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 21, 2020; accepted October 6, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, L., Kuang, S., Liu, L. et al. CFD Modeling and Analysis of Particle Size Reduction and Its Effect on Blast Furnace Ironmaking. Metall Mater Trans B 52, 138–155 (2021). https://doi.org/10.1007/s11663-020-02001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02001-9

Navigation