Skip to main content

Advertisement

Log in

Copper Smelting Slag Cleaning in an Electric Furnace by Using Waste Cooking Oil

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In view of the non-renewable reductant resources and carbon neutralization in the process of copper slag cleaning in an electric furnace, this study proposed to use waste cooking oil as reductant to replace fossil energy. Combined with the phase equilibrium theory and experimental results, the harm of excessive magnetite in the copper smelting slag to the cleaning process was clarified. The reduction thermodynamics of magnetite by using WCO is analyzed. A series of copper slag cleaning experiments with different WCO dosages along with various temperatures and settling durations was systematically carried out in a laboratory-scale electric furnace. The distribution of matte particles in each slag layer after cleaning was investigated in detail, which indicates that the copper content in the upper slag layer can be reduced to 0.56 wt pct via WCO reduction, realizing the green cleaning of copper slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R. Sridhar, J.M. Toguri and S. Simeonov: Metall. Mater. Trans. B., 1997, vol. 28, pp. 191-200.

    Article  CAS  Google Scholar 

  2. S. Demetrio, S.A.J. Ahumada, M.Á. Durán, E. Mast, U. Rojas, J. Sanhueza, P. Reyes and E. Morales: JOM, 2000, vol. 52, pp. 20-25.

    Article  CAS  Google Scholar 

  3. A. Warczok, G. Riveros, P. Echeverríã, C.M. Díaz, H. Schwarze and G. Sãnchez: Can. Metall. Q., 2013, vol. 41, pp. 465-73.

    Article  Google Scholar 

  4. N. Karimi, R. Vaghar and M.R.T. Mohammadi: J. Inst. Eng. India Ser. D., 2013, vol. 94, pp. 43-50.

    Article  Google Scholar 

  5. A. Sarrafi, B. Rahmati, H.R. Hassani and H.H.A. Shirazi: Miner. Eng., 2004, vol. 17, pp. 457-59.

    Article  CAS  Google Scholar 

  6. U. Kumar, S. Maroufi, R. Rajarao, M. Mayyas, I. Mansuri, R.K. Joshi and V. Sahajwalla: J. Clean. Prod., 2017, vol. 158, pp. 218-24.

    Article  CAS  Google Scholar 

  7. S. Zhou, Y. Wei, B. Li and H. Wang: J. Clean. Prod., 2019, vol. 217, pp. 423-31.

    Article  CAS  Google Scholar 

  8. Z. Zuo, Q. Yu, M. Wei, H. Xie, W. Duan, K. Wang and Q. Qin: J. Therm. Anal. Calorim., 2016, vol. 126, pp. 481-91.

    Article  CAS  Google Scholar 

  9. S. Chen and L. Xu: China Food Drug Adm. Mag., 2018, vol. 4, pp. 50-53. (In Chinese)

    Google Scholar 

  10. C.D. Mandolesi de Araújo, C.C. de Andrade, E. de Souza e Silva and F.A. Dupas: Renew. Sustain. Energy Rev., 2013, vol. 27, pp. 445–52.

  11. M.J.A. Romero, A. Pizzi, G. Toscano, G. Busca, B. Bosio and E. Arato: Waste Manage., 2016, vol. 47, pp. 62-68.

    Article  CAS  Google Scholar 

  12. S. Zhou, Y. Wei, S. Zhang, B. Li, H. Wang, Y. Yang and M. Barati: J. Clean. Prod., 2019, vol. 236, 117668.

    Article  CAS  Google Scholar 

  13. S. Zhou, Y. Wei, B. Li and H. Wang: Metall. Mater. Trans. B., 2018, vol. 49, pp. 3086-96.

    Article  Google Scholar 

  14. J. Oh and D. Noh: Fuel, 2017, vol. 196, pp. 144-53.

    Article  CAS  Google Scholar 

  15. H. Zhang, X. Shi, Z. Bo and H. Xin: Metall. Mater. Trans. B., 2014, vol. 45, pp. 582-89.

    Google Scholar 

  16. J.H. Heo, B.S. Kim and J.H. Park: Metall. Mater. Trans. B., 2013, vol. 44, pp. 1352-63.

    Article  Google Scholar 

  17. W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak and W. Maniukiewicz: Appl. Catal. A, 2007, vol. 326, pp. 17-27.

    Article  CAS  Google Scholar 

  18. X. Huang: Principles of iron and steel metallurgy, 3rd ed., Metallurgical Industry Press, Beijing, 2002, pp. 418–19 (In Chinese)

    Google Scholar 

  19. H.J. Grabke: Metall. Trans., 1970, vol. 1, pp. 2972-75.

    CAS  Google Scholar 

  20. R. Sridhar, J.M. Toguri and S. Simeonov: JOM, 1997, vol. 49, pp. 48-52.

    Article  CAS  Google Scholar 

  21. P.K. Iwamasa and R.J. Fruehan: ISIJ Int., 1996, vol. 36, pp. 1319-27.

    Article  CAS  Google Scholar 

  22. P. Coursol, N. CardonaValencia, P. Mackey, S. Bell and B. Davis: JOM, 2013, vol. 64, pp. 1305-13.

    Article  Google Scholar 

  23. J.M. Toguri and N.H. Santander: Can. Metall. Q., 1969, vol. 8, pp. 167-71.

    Article  CAS  Google Scholar 

  24. P.J. Mackey: Can. Metall. Q., 1982, vol. 21, pp. 221-60.

    Article  CAS  Google Scholar 

  25. M. Nagamori: Metall. Trans., 1974, vol. 5, pp. 531-38.

    Article  Google Scholar 

  26. C. Liu: Physical chemistry of copper metallurgy, Science and technology of China press, Beijing, 1990, pp. 600-02 (In Chinese)

    Google Scholar 

  27. N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures, Pergamon, Oxford, 1999.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51664039 and U1602272); China Scholarship Council (the International Clean Energy Talent Program, 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 20, 2020; accepted September 22, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Zhang, T., Li, B. et al. Copper Smelting Slag Cleaning in an Electric Furnace by Using Waste Cooking Oil. Metall Mater Trans B 51, 2756–2768 (2020). https://doi.org/10.1007/s11663-020-01986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01986-7

Navigation