Skip to main content
Log in

Reduction of Magnetite from Copper Smelting Slag in the Presence of a Graphite Rod

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Through the reduction reaction of Fe3O4 and graphite rod, the viscosity of slag was reduced and the settlement of matte in slag was promoted. The reduction of Fe3O4 in copper slag by a graphite rod was studied and the kinetics of the reduction process analyzed. The results show that the content of Fe3O4 decreased with increase in reduction temperature and reduction time. The slag samples after reduction were examined and found to consist of three layers: a slag foam layer, a fayalite layer, and a matte layer. A substantial number of large-sized matte particles were found in the slag foam layer. Also, a layer of Fe3O4 was attached to the upper surface of the matte layer. The reduction of Fe3O4 was concluded to be a second-order reaction, the apparent activation energy was 610 kJ/mol, and the limiting step was the Boudouard reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. [1] Z.H. Yang, Q. Lin, S.C. Lu, Y. He, G.D. Liao, and Y. Ke: Ceram Int, 2014, vol. 40, pp. 7297-305.

    Article  CAS  Google Scholar 

  2. [2] J. Zhang, Y.H. Qi, D.L. Yan, X.L. Cheng, and P. He: J Iron Steel Res Int., 2015, vol. 2, pp. 121-27.

    Article  Google Scholar 

  3. J Zhang, YH Qi, DL Yan, and HC Xu (2015) J Iron Steel Res Int., vol. 5, pp. 396-401.

    Article  Google Scholar 

  4. [4] L. Miganei, E. Gock, M. Achimovicová, L. Koch, H. Zobel, and J. Kähler: J Clean Prod., 2017, vol. 164, pp. 534-42.

    Article  CAS  Google Scholar 

  5. [5] Y. Shi, Y.G. Wei, S.W. Zhou, B. Li, Y.D. Yang, and H. Wang: J Alloy Compd., 2020, vol. 822, pp. 153478-84.

    Article  CAS  Google Scholar 

  6. [6] S.W. Zhou, Y.G. Wei, B. Li, and H. Wang: Metall Mater Trans B., 2018, vol. 49B, pp. 3086-96.

    Article  Google Scholar 

  7. [7] R.G. Reddy, V.L. Prabhu, and D. Mantha: High Temp Mat Pr-isr., 2003, vol. 22, pp. 25-33.

    Article  CAS  Google Scholar 

  8. [8] S. Jahanshahi, and S. Wright: Metall Mater Trans B. 2017, vol. 48B, pp. 2057-66.

    Article  Google Scholar 

  9. B Li, YG Wei, H Wang, YD Yang (2018) ISIJ Int. vol. 58, pp. 1168-74.

    Article  CAS  Google Scholar 

  10. [10] S.W. Zhou, Y.G. Wei, Y. Shi, B. Li, and H. Wang: Metall Mater Trans B. 2018, vol. 49B, pp. 2458-68.

    Article  Google Scholar 

  11. [11] J. Martinsson, B. Glaser, and S. Du: Metall Mater Trans B. 2016, vol. 47, pp. 1-4.

    Article  Google Scholar 

  12. [12] A. Davydenko, A. Karasev, G. Lindstrand, and P. Jonsson: Steel Res Int., 2015, vol. 86, pp. 146-53.

    Article  CAS  Google Scholar 

  13. [13] S.W. Li, J. Pan, D.Q. Zhu, Z.Q. Guo, J.W. Xu, and J.L. Chou: Powder Technol, 2019, vol. 347, pp. 159-69.

    Article  CAS  Google Scholar 

  14. [14] E.D. Wilde, I. Bellemans, L. Zheng, M. Campforts, M. Guo, B. Blanpain, N. Moelans, and K. Verbeken: Mater. Sci. Technol., 2016, vol. 32, pp. 1911–24.

    Article  Google Scholar 

  15. [15] G.R. Qu, Y.G. Wei, B. Li, H. Wang, Y.D. Yang, and A. McLean: J Alloy Compd., 2020, vol. 824, pp. 15910-18.

    Article  Google Scholar 

  16. [16] C.B. Wu, J.B. Zhang, Q.J. Wu, and L. Yue: Journal of Chongqing University, 2015, vol. 38, pp. 11-16.

    CAS  Google Scholar 

  17. [17] S.N. Lekakh, and B. Hrebec: Int J Metalcast., 2016, vol. 10, pp. 1-12.

    Article  Google Scholar 

  18. [18] D.Y. Kim, I.H. Jeong, and S.M. Jung: Ironmak Steelmak., 2015, vol. 43, pp. 526-32.

    Article  Google Scholar 

  19. [19] X.L. Huang: Iron and Steel Metallurgy (Ironmaking Part), Metallurgical Industry Press, Beijing, 2000, pp. 413-38.

    Google Scholar 

  20. [20] Y.G. Guo, R. Zhu, Z.Z. Fei, M.S. Ma, Y. Wang, and J. Liu: China Nonferrous Metallurgy, 2017, vol. 5, pp. 75-80.

    Google Scholar 

  21. [21] G. Wang, Q.G. Xue, Y.F. Shen, and J.S. Wang: Chinese Journal of Engineering, 2016, vol. 5, pp. 623-29.

    Google Scholar 

  22. [22] Z. Z. Huang, X.G. Xiao, and Z.Q. Xiao: The Chinese Journal of Process Engineering, 1994, vol. 4, pp. 283-88.

    Google Scholar 

  23. [23] H. M. Long, J. X. Li, P. Wang and S. Q. Shi: Ironmak Steelmak, 2012, vol. 39, pp. 585-92.

    Article  CAS  Google Scholar 

  24. [24] J.L. Zhang, Z.Y. Wang, X.D. Xing, Z.J. Liu and X.L. Liu: J Cent South Univ (Science and Technology), 2015, vol. 46, pp. 41-48.

    CAS  Google Scholar 

  25. [25] S.M. Jung, and S.H. Yi: Ironmak Steelmak, 2014, vol. 41, pp. 38-46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by the National Natural Science Foundation of China (Nos. U1602272, 51664039, and 51764035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 3, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, B., Wei, Y. et al. Reduction of Magnetite from Copper Smelting Slag in the Presence of a Graphite Rod. Metall Mater Trans B 51, 2663–2672 (2020). https://doi.org/10.1007/s11663-020-01963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01963-0

Navigation