Skip to main content
Log in

Effect of CaF2 on Phosphorus Refining from Molten Steel by Electric Arc Furnace Slag using Direct Reduced Iron (DRI) as a Raw Material

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of CaF2 addition on dephosphorization reaction between molten steel and electric arc furnace (EAF) slag using direct reduced iron (DRI) at 1823 K (1550 °C) was investigated. Basicity, the thermodynamic parameter affecting the removal capacity of phosphorus (i.e., phosphate capacity), decreased using DRI due to an increased SiO2 concentration in the slag. To minimize slag volume and maximize dephosphorization efficiency, the CaF2 was added to the slag. As CaF2 content increased (0 to 10 mass pct), dephosphorization efficiency also increased. Thermodynamic analysis in conjunction with slag structural studies using Raman spectroscopy were conducted to explain the complicated phenomena. The results exhibited that even 5 to 6 mass pct CaF2 can improve the dephosphorization efficiency when DRI is used as raw material in an EAF process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. [1]R.D. Morales, A.N. Conejo and H.H. Rodriguez: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 187-99.

    CAS  Google Scholar 

  2. [2]T. Harada and H. Tanaka: ISIJ Int., 2011, vol. 51, pp. 1301-07.

    CAS  Google Scholar 

  3. [3]M. Kirschen, K. Badr and H. Pfeifer: Energy, 2011, vol. 36, pp. 6146-55.

    CAS  Google Scholar 

  4. [4]A.A. Maneti, P. Duarte and J. Morales: Proc. AISTech 2016, 2016, pp. 64-70.

    Google Scholar 

  5. [5]F. Memoli: Proc. AISTech 2016, 2016, pp. 91-100.

    Google Scholar 

  6. [6]C. Yilmaz and T. Turek: J. Clean. Prod., 2017, vol. 164, pp. 1519-30.

    CAS  Google Scholar 

  7. [7]R.L. González, F.L. Acosta, M. Lowry, D. Kundrat, A. Wyatt, J. Kuntze and H. Fuchs: Proc. AISTech 2017, 2017, pp. 1035-41.

    Google Scholar 

  8. [8]P. Duarte and J. Martinez: Proc. AISTech 2017, 2017, pp. 815-24.

    Google Scholar 

  9. [9]P. Duarte, J. Morales, F. Memoli and A. Martinis: Proc. AISTech 2017, 2017, pp. 955-61.

    Google Scholar 

  10. [10]T.A. Bloom, D.R. Fosnacht and D.M. Haezebrouck: Iron & Steelmaker, 1990, vol. 17, pp. 35-41.

    CAS  Google Scholar 

  11. [11]R.J. Fruehan and C.P. Manning: Behavior of Phosphorus in DRI/HBI during Electric Furnace Steelmaking, AISI/DOE Technology Roadmap Program, Final Report, Oct. 5, 2001, pp. 1-200.

    Google Scholar 

  12. [12]J.H. Heo and J.H. Park: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3381-89.

    Google Scholar 

  13. [13]K. Sadrnezhaad: Scientia Iranica, 1996, vol. 3, pp. 113-19.

    Google Scholar 

  14. [14]G. Li, T. Hamano and F.Tukihashi: ISIJ Int., 2005, vol. 45, pp.12-18.

    CAS  Google Scholar 

  15. [15]T. Hamano and F. Tukihashi: ISIJ Int., 2005, vol. 45, pp.159-65.

    CAS  Google Scholar 

  16. [16]C.M. Lee and R.J. Fruehan: Ironmaking & Steelmaking, 2005, vol. 32, pp. 503-08.

    CAS  Google Scholar 

  17. [17]G.J.W. Kor: Metall. Trans. B, 1977, vol. 8B, pp. 107-13.

    CAS  Google Scholar 

  18. [18]H. Suito, R. Inoue and M. Takada: Trans. ISIJ, 1981, vol. 21, pp. 250-59.

    CAS  Google Scholar 

  19. [19]H. Suito and R. Inoue: Trans. ISIJ, 1982, vol. 22, pp. 869-77.

    Google Scholar 

  20. [20]Y. Shirota, K. Katohgi, K. Klein, H.J. Engell and D. Janke: Trans ISIJ, 1985, vol. 25, pp. 1132-40.

    CAS  Google Scholar 

  21. [21]B.J. Monaghan, R.J. Pomfret and K.S. Coley: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 111-18.

    CAS  Google Scholar 

  22. [22]W.H. Van Niekerk and R.J. Dippenaar: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 147-53.

    Google Scholar 

  23. [23]J.H. Park, D.J. Min and H.S. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 723-29.

    CAS  Google Scholar 

  24. [24]J.H. Park and D.J. Min: J. Non-Cryst. Solids, 2004, vol. 337, pp. 150-56.

    CAS  Google Scholar 

  25. [25]K.Y. Ko and J.H. Park: ISIJ Int., 2013, vol. 53, pp. 958-65.

    CAS  Google Scholar 

  26. [26]T.S. Kim and J.H. Park: ISIJ Int., 2014, vol. 54, pp. 2031-38.

    CAS  Google Scholar 

  27. [27]J.H. Park, K.Y. Ko and T.S. Kim: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 741-48.

    Google Scholar 

  28. [28]T.S. Kim and J.H. Park: J. Am.Ceram. Soc., 2019, vol. 102, pp. 4943-55.

    CAS  Google Scholar 

  29. [29]D. Virgo, B.O. Mysen and I. Kushiro: Sience, 1980, vol. 208, pp. 1371-73.

    CAS  Google Scholar 

  30. B.O. Mysen and P. Richet: Glasses and Melts: Properties and Structure, Amsterdam, Boston, 2005, pp. 69-100.

  31. [31]J.H. Park: ISIJ Int., 2012, vol. 52, pp. 1627-36.

    CAS  Google Scholar 

  32. [32]J.H. Park: ISIJ Int., 2012, vol. 52, pp. 2303-04.

    CAS  Google Scholar 

  33. [33]J.H. Park: J. Non-Cryst. Solids., 2012, vol. 358, pp. 3096-3102.

    CAS  Google Scholar 

  34. [34]J.H. Park: Met. Mater. Int., 2013, vol. 19, pp. 577-84.

    CAS  Google Scholar 

  35. [35]J.H. Park: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 938-47.

    Google Scholar 

  36. [36]T.S. Kim, S.J. Jeong and J.H. Park: Met. Mater. Int., 2019, https://doi.org/10.1007/s12540-019-00474-1.

    Article  Google Scholar 

  37. [37]J.H. Park and D.J. Min: Steel Research Int., 2004, vol. 75, pp. 807-11.

    CAS  Google Scholar 

  38. [38]C. Wagner: Metall. Trans. B, 1975, vol. 6B, pp. 405-09.

    CAS  Google Scholar 

  39. [39]M. Yamamoto, K. Yamada, L.L. Meshkov and E. Kato: Tetsu-to-Hagane, 1980, vol. 66, pp. 2032-39.

    CAS  Google Scholar 

  40. T.A. Engh, C.J. Simensen and O. Wijk: Principles of Metal Refining, Oxford University Press, 1992.

  41. M. Hino and K. Ito: Thermodynamic Data for Steelmaking, The 19th Committee in Steelmaking, The Japan Society for Promotion of Science (JSPS), Tohoku University Press, 2010, pp. 259-64.

  42. N. Sano: Advanced Physical Chemistry for Process Metallurgy, Academic Press, 1997, p. 45.

  43. [43]J.H. Park and D.J. Min: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 689-94.

    CAS  Google Scholar 

  44. [44]J.H. Park, G.H. Park and Y.E. Lee: ISIJ Int., 2010, vol. 50, pp. 1078-83.

    CAS  Google Scholar 

  45. [45]K.Y. Ko and J.H. Park: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1224-30.

    Google Scholar 

  46. [46]S.H. Lee, S.M. Moon, D.J. Min and J.H. Park: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 55-59.

    CAS  Google Scholar 

  47. www.factsage.com (accessed on 1st April 2020).

  48. [48]S. Hara, T. Tokonami and K. Ogino: Tetsu-to-Hagane, 1992, vol. 78, pp. 557-63.

    CAS  Google Scholar 

  49. [49]M.K. Cho, J.H. Park and D.J. Min: ISIJ Int., 2010, vol. 50, pp. 324-26.

    CAS  Google Scholar 

  50. [50]C.H.P. Lupis: Chemical Thermodynamics of Materials, North-Holland, New York, 1983, pp. 155-58.

    Google Scholar 

  51. [51]W. Fix, H. Heymann and R. Heinke: J. Am. Ceram. Soc., 1969, vol. 52, pp. 346-47.

    CAS  Google Scholar 

  52. [52]H. Suito and R. Inoue: ISIJ Int., 2006, vol. 46, pp. 180-87.

    CAS  Google Scholar 

  53. [53]F. Pahlevani, S. Kitamura, H. Shibata and N. Maruoka: ISIJ Int., 2010, vol. 50, pp. 822-29.

    CAS  Google Scholar 

  54. [54]J.H. Shin and J.H. Park: ISIJ Int., 2013, vol. 53, pp. 2266-68.

    CAS  Google Scholar 

  55. [55]M. Muraki, H. Fukushima and N. Sano: Trans. ISIJ, 1985, vol. 25, pp. 1025-30.

    Google Scholar 

  56. [56]I. Iwasaki, E.F. Wu and T. Fujita: Min. Process. Extract. Metall. Rev., 1993, vol. 12, pp. 19-36.

    Google Scholar 

  57. [57]G.H. Park, Y.B. Kang and J.H. Park: ISIJ Int., 2011, vol. 51, pp. 1375-82.

    Google Scholar 

  58. [58]Y.B. Kang and J.H. Park: Metall. Mater. Trans. B, 2011, vol. 42B, 1211-17.

    Google Scholar 

  59. [59]J.H. Park and G.H. Park: ISIJ Int., 2012, vol. 52, pp. 764-69.

    CAS  Google Scholar 

  60. [60]J.H. Park: Steel Res. Int., 2013, vol. 84, pp. 664-69.

    CAS  Google Scholar 

  61. [61]S.J. Jeong, T.S. Kim and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 545-53.

    Google Scholar 

  62. [62]J.H. Park, J.G. Park, D.J. Min, Y.E. Lee and Y.B. Kang: J. Eur. Ceram. Soc., 2010, vol. 30, pp. 3181-86.

    CAS  Google Scholar 

  63. [63]J.S. Han, J.H. Heo and J.H. Park: Ceram. Int., 2019, vol. 45, pp. 10481-91.

    CAS  Google Scholar 

  64. T.S. Kim and J.H. Park: J. Non-Cryst. Solids, 2020, in press.

  65. [65]J.H. Park and D.J. Min: ISIJ Int., 2007, vol. 47, pp. 1368-69.

    CAS  Google Scholar 

  66. [66]J.D. Frantz and B.O. Mysen: Chem Geol., 1995, vol. 121, pp. 155-76.

    CAS  Google Scholar 

  67. [67]Y.Q. Wu, G.C. Jiang, J.L. You, H.Y. Hou, H. Chen and K.D. Xu: J. Chem. Phys., 2004, vol. 121, pp. 7883-95.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Competency Development Program for Industry Specialists from the Korea Institute for Advancement of Technology (KIAT, Grant Number P0002019) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP, Grant Number 20172010106310), funded by the Ministry of Trade, Industry & Energy (MOTIE), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 22, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, M.K., Kim, T.S. & Park, J.H. Effect of CaF2 on Phosphorus Refining from Molten Steel by Electric Arc Furnace Slag using Direct Reduced Iron (DRI) as a Raw Material. Metall Mater Trans B 51, 3028–3038 (2020). https://doi.org/10.1007/s11663-020-01957-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01957-y

Navigation