Skip to main content
Log in

Characterization of Copper Smelting Flue Dusts from a Bottom-Blowing Bath Smelting Furnace and a Flash Smelting Furnace

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The smelting technology and flue dust treatment have an influence on the physical and chemical characteristics of flue dusts collected in copper smelting. We characterized flue dusts from a Bottom-Blowing Bath Smelting (BBS) process and from a Flash Smelting (FS) process by determining their comprehensive physical, chemical, and mineralogical characteristics. Annual flue dust generation data showed that the rate of the BBS process (2 to 3 pct) was clearly lower than that of FS process (5 to 6 pct). The results revealed that copper smelting flue dusts from the FS exhibited a larger entrainment of solids and a smaller particle size than the BBS. The crystallographic and chemical compositions of the samples indicated that the FS flue dusts have a higher degree of crystallinity than those of the BBS. Fe3O4, CuSO4 and PbSO4, Fe3O4, CuFe5O8 were the predominant crystalline phases in the FS and BBS flue dusts, respectively. In the FS and BBS flue dusts, amorphous multicomponent Cu-Zn-FeOx and Cu-Zn-S phases were formed, respectively. Mineralogical examinations and a stepwise chemical extraction confirmed that the majority of arsenic existed in amorphous form and mostly as pentavalent As5+ arsenate or As2O5 except that in BBS-ESPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schlesinger M. E., King M. J., Sole K. C., & Davenport W. G. Extractive Metallurgy of Copper, Elsevier, Amsterdam 2011, p. 2.

    Google Scholar 

  2. Guo X., Wang Q., Liao L., Tian Q., & Zhang Y.: Nonferr. Metals Science Engineering, 2014, Vol. 5, pp. 28-34.

    CAS  Google Scholar 

  3. Guo X., Song Y., & Wang Y.: Res. Conserv. Recycling, 2008, Vol. 52, pp. 871-882.

    Article  Google Scholar 

  4. Li M., Tong C., Huang J., & Wang J.: Chinese J. Process Engin., 2016, Vol. 16, pp. 1028-1037.

    CAS  Google Scholar 

  5. S. Zhou: Nonferr. Met., 2009, pp. 11–15, 20 (in Chinese).

  6. Liu J., Gui W., Xie Y., & Yang C.: Appl. Mathem. Modell., 2014, Vol. 38, pp. 2206-2213.

    Article  Google Scholar 

  7. Y. He: World Non-ferr. Met., 2018, pp. 7–10 (in Chinese).

  8. Coursol P., Mackey P., Kapusta J., Kapusta, N., & Cardona V.: JOM, 2015, Vol. 67, pp. 1066-1074.

    Article  CAS  Google Scholar 

  9. Liu L., Yan H., Zhou J., Gao Q., Zhang Z., Liu F., & Cui Z.: Chinese J. Nonferr. Metals, 2012, Vol. 22, pp. 2116-2124.

    CAS  Google Scholar 

  10. Yu Y., Wen Z., Liu X., Su F., Lan H., & Hao X.: Appl. Mechan. Mater., 2014, Vol. 602-605, pp. 546-553.

    Article  Google Scholar 

  11. Sohn H., Fukunaka Y., Oishi T., Asaki Z., & Song H.: Metall. Mater. Trans. B, 2004, Vol. 35, pp. 651-661.

    Article  CAS  Google Scholar 

  12. Chen C., Zhang L., & Jahanshahi S.: Metall. Mater. Trans. B, 2010, Vol. 41, pp. 1175-1185.

    Article  Google Scholar 

  13. Wang Q., Guo X., Tian Q., & Jiang T.: Metals, 2017, Vol. 7, pp. 1-11.

    Google Scholar 

  14. Wang Q., Guo X., Tian Q., Chen M., & Zhao B.: Metals, 2017, Vol. 7, pp. 1-12.

    Google Scholar 

  15. Chen H., Mei Z., Xie K., Li X., Zhou J., Wang X., & Ge Z.: Trans. Nonferr. Metals Soc. China, 2004, Vol. 14, pp. 631-636.

    CAS  Google Scholar 

  16. Itagaki K., & Yazawa A.: Mater. Trans. JIM, 2007, Vol.23, pp. 759-767.

    Article  Google Scholar 

  17. Mendoza D., Hino M., & Itagaki K.: Mater. Trans. B, 2001, Vol. 42, pp. 2427-2433.

    Article  CAS  Google Scholar 

  18. Swinbourne D., & Kho T.: Metall. Mater. Trans. B, 2012, Vol. 43, pp. 823-829.

    Article  CAS  Google Scholar 

  19. Z. Chen: China Nonferr. Metall., 2009, pp. 16–22 (in Chinese).

  20. R. Kaur, C. Nexship, M. Wilson, and D. George-Kennedy: in: Proc. Copper 2010. DGBM, Clausthal-Zellerfeld, Germany, 2010, pp. 2415–32.

  21. Balladares E., Kelm U., Helle S., Parra R., & Araneda E.: Dyna, 2014, Vol. 81, pp. 11-18.

    Article  Google Scholar 

  22. Montenegro V., Sano H., & Fujisawa T.: Mater. Trans., 2008, Vol. 49, pp. 2112-2118.

    Article  CAS  Google Scholar 

  23. Montenegro V., Sano H., & Fujisawa T.: Miner. Engin., 2013, Vol. 49, pp. 184-189.

    Article  CAS  Google Scholar 

  24. Samuelsson C., & Carlsson G.: CIM Bulletin, 2005, Vol. 94, pp. 111-115.

    Google Scholar 

  25. Jarošíková A., Ettler V., Mihaljevič M., Drahota P., Culka A., & Racek M.: J. Environm. Managem., 2018, Vol. 209, pp. 71-80.

    Article  Google Scholar 

  26. Zhong D., Li L., & Tan C.: Metall. Mater. Trans. B, 2017, Vol. 48, pp. 1308-1314.

    Article  Google Scholar 

  27. Tae K.-H., Bok H.-K., Kye S.-P., & Debasish M.: Separ. Purif. Techn., 2015, Vol. 142, pp. 116-122.

    Article  Google Scholar 

  28. Wu J., Chang F., Wang H., Tsai M., Ko C.-H., & Chen C.-C.: Environm. Technol., 2015, Vol. 36, pp. 2952-2958.

    Article  CAS  Google Scholar 

  29. Csavina J., Taylor M., Omar F., Rine K., Sáez A., & Betterton E.: Sci. Total Environm., 2014, Vol. 493, pp. 750-756.

    Article  CAS  Google Scholar 

  30. Morales A., Cruells M., Roca A., & Bergó R.: Hydrometallurgy, 2010, Vol. 105, pp. 148-154.

    Article  CAS  Google Scholar 

  31. Z. Li and B. Xu: Metallurgy Technology of Copper, Chemical Industry Press, Beijing, 2012, p. 7.

    Google Scholar 

  32. H. Ren: Non-ferrous Metal Bath Smelting, Metallurgical Industry Press, Beijing, 2001, pp. 2–6.

    Google Scholar 

  33. Zhu Z., & He J.: Modern copper smelting, Science Press, Beijing, 2003, pp. 23-45.

    Google Scholar 

  34. J. Talja, S. Chen, H. Mansikkaviita, and C. Berg: in: Proc. Copper 2013, vol. III (Book 1), Santiago, Chile. Ch IMM, 2013, pp. 67–77.

  35. FEI MLA software, Thermo Fischer Scientific, USA; accessed in October 2019 at: https://www.fei.com/materials-science/minerals-mining/.

  36. Toby B. H.: J. Appl. Cryst., 2005, Vol. 38, pp. 1040-1041.

    Article  CAS  Google Scholar 

  37. Redwan M., Rammlmair D., & Meima J.: Sci. Total Environ., 2012, Vol. 414, pp. 480.

    Article  Google Scholar 

  38. Stathopoulos V., Papandreou A., Kanellopoulou D., & Stournaras C.: J. Haz. Mater., 2013, Vol. 262, pp. 91-99.

    Article  CAS  Google Scholar 

  39. Samuelsson C., & Björkman B.: Thermodynamic studies. Scand. J. of Metall., 1998, Vol. 27, pp. 64-72.

    CAS  Google Scholar 

  40. Stefanova V., Shentov D., Mihailova I., & Iliev P.: Russ. J. Non-Ferr. Metals, 2012, Vol. 53, pp. 26-32.

    Article  Google Scholar 

  41. CA Martinson, & Reddy K.: J. Colloid Interface Sci., 2009, Vol. 336, pp. 406-11.

    Article  CAS  Google Scholar 

  42. Nasef M., Saidi H., Nor H., & Yarmo M.: J. Appl. Polymer Sci., 2000, Vol. 76, pp. 336-349.

    Article  CAS  Google Scholar 

  43. H. Zhang: Chemical Phase Analysis of Ores and Industrial Products: Nonferrous Metals Industry Analysis Series, Metallurgical Industry Press, Beijing, 1992, pp. 50–53 (in Chinese).

    Google Scholar 

  44. Yang W., Tian S., Wu J., Chai L., & Liao Q.: JOM, 2017, Vol. 69, pp. 1077-1083.

    Article  CAS  Google Scholar 

  45. Safarzadeh M., Miller J., & Huang H.: Metall. Mater. Trans. B, 2014, Vol. 45, pp. 568-581.

    Article  Google Scholar 

  46. Cheng R., Zhang H., & Ni H.: Processes, 2019, Vol. 7, pp. 754.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Key R&D Program of China (2017YFC0210405), the key project of National Natural Science Foundation of China (51634010), National Natural Science Foundation of China (51722407) and the “Double First Class” Funding Project of Central South University (31801-160170002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Peng or Hui Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 13, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhao, Z., Taskinen, P. et al. Characterization of Copper Smelting Flue Dusts from a Bottom-Blowing Bath Smelting Furnace and a Flash Smelting Furnace. Metall Mater Trans B 51, 2596–2608 (2020). https://doi.org/10.1007/s11663-020-01907-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01907-8

Navigation