Abstract
The partial roasting of high-arsenic copper concentrates at 973 K/998 K (700 °C/725 °C) under controlled atmosphere can remove > 95 pct of the arsenic contained in the concentrates, leaving a calcine with 52 to 68 wt pct bornite, 10 to 13 wt pct chalcopyrite and 2 to 5 wt pct magnetite, with 8 to 24 wt pct remnant chalcocite. The mineralogic composition of the calcine obtained is consistent with the calculated mineralogic composition based on the chemical analysis of the calcine and the gaseous phase in equilibrium with the calcine. The formation of the new solid phases present in the calcine (bornite and chalcopyrite) should take place in the emulsion phase of the fluidized bed, while the oxidation of part of the gaseous sulfur generated by thermal decomposition of the sulfides present in the concentrate could occur in the evolving cloud and wake surrounding the air bubbles in the emulsion phase of the fluidized bed.
This is a preview of subscription content, access via your institution.









Abbreviations
- D :
-
Diffusion coefficient of oxygen at 973 K, ~ 0.15 cm2/s
- \( \bar{d}_{\text{p}} \) :
-
Average particle diameter = 5 × 10−3 cm
- \( \bar{d}_{\text{b}} \) :
-
Average gas bubble diameter = 6 cm
- g :
-
Acceleration of gravity, 980.6 cm/s
- Kbe, Kbc, Kcc :
-
Mass exchange coefficients of gas between bubble and emulsion, bubble and cloud + wake and cloud + wake and emulsion, (1/s)
- T :
-
Temperature (°C)
- \( \bar{t} \) :
-
Average reaction time of solids in the bed, (h)
- u br :
-
Velocity of gas bubbles, 54 cm/s
- u mf :
-
Minimum fluidizing velocity, 5.5 cm/s
- \( \varepsilon_{\text{mf}} \) :
-
Bed porosity at minimum fluidizing velocity, 0.25 (-)
- \( \bar{\rho }_{\text{s}} \) :
-
Average density of solids = 4.5 g/cm3 = 3.58 × 10−2 mole/cm3
References
N. Chakraborti and D.C. Lynch: Met. Trans. B, 1983, vol. 14B, pp. 239-251.
D.C. Lynch: in Arsenic Metallurgy: Fundamentals and Applications, R.G. Reddy et al. eds., The Metal Society, Warrendale, 1998, pp. 3-34.
S. Nakasawa, A. Yazawa and F.R.A. Jorgensen: Met. Trans. B., 1999, Vol. 30B, pp. 393-401.
I. Imris and A. Klenovcanova: Copper ’03 Conference, Books 2, Pyrometallurgy of Copper, vol. IV, 2003, pp. 125–39.
G. Lindkvist and A. Hölmstrom: in Advances in Sulfide Smelting, H.Y. Sohn and D.B. George eds., AIME Meeting, San Francisco, vol. 2, 1983, pp. 452–72.
J. Tapia and I. Wilkomirsky: J. Miner. Metall. Process., 2001, vol. 18, pp. 154–61.
A. Hölmstrom: in Extraction Metallurgy ’85, The Institute of Mining and Metallurgy, London, 1985, pp. 935–66.
V.A. Luganov, E.N. Sajin, and G.A. Plaskin: Copper’95 Conference, Pyrometallurgy of Copper, vol. IV, 1995, pp. 409–19.
S. Mäkipirtii: US Patent 4,242,124 (Dec. 30, 1980).
A. Björnberg, A. Hölmstrom, and G. Lidkvist: US patent 4.626.279 (Dec. 2, 1986).
E. Seguel: Met. Engr. thesis, Department of Metallurgical Engineering, University of Concepción, Chile, 2018.
G. Kullerud: Phase Diagram for Ceramists, The American Ceramic Society, Columbus, vol. 2, 1969, p. 519.
P.N. Rowe, B.A. Partridge, and E. Lyall: Chem. Eng. Sci., 1964, vol. 19, pp. 973-75.
D. Geldart: Powder Technol., 1978, vol. 19, p. 133
D. Kunii and O. Levenspiel: Fluidization Engineering, 2nd edn., Butterworth-Heinemann, Oxford, 1991, pp. 251-252.
D. Kunii and O. Levenspiel: Fluidization Engineering, 2nd edn., Butterworth-Heinemann, Oxford, 1991, p. 149.
Y. Fan: M.Sc. thesis, Department of Metallurgical Engineering, University of Concepción, Chile, 1997.
I. Wilkomirsky, R. Parra, F. Parada, E. Balladares, E. Seguel, J. Etcheverry, and R. Díaz: Metall. Mat. Trans. B, 2020. https://doi.org/10.1007/s11663-020-01870-4.
C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin. J. Sangster, P. Spencer, and M.-A. Van Ende: Calphad, 2016, vol. 54, pp. 35–53.
Acknowledgements
The authors thank the DMH Division of CODELCO for permission to publish the experimental data and also Conicyt/PIA for additional support through the CCTE AFB170007 program.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Manuscript submitted April 2, 2019.
Rights and permissions
About this article
Cite this article
Wilkomirsky, I., Parra, R., Parada, F. et al. Partial Roasting of High-Arsenic Copper Concentrates. Metall Mater Trans B 51, 2030–2038 (2020). https://doi.org/10.1007/s11663-020-01893-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11663-020-01893-x