Skip to main content
Log in

Numerical Analysis of the Particle-Induced Effect on Gas Flow in a Supersonic Powder-Laden Oxygen Jet

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The article addresses the particle-induced effect on gas flow by a developed mathematical model simulating the supersonic oxygen–limestone powder mixture jet from a newly designed, freely swinging oxygen lance for dephosphorization in a converter. The model was validated first and then employed to analyze the gas flow dynamics with respect to the jet structure, pressure wave sequence and velocity distribution, and particle motion behaviors over a range of powder particle sizes and mass flowrates. Numerical results reveal that the powder causes significant changes of the oxygen jet structure and weakens the pressure wave sequence outside the nozzle despite the higher gas flow static pressure of the powder-laden oxygen jet than that of the single-phase oxygen jet there. Furthermore, the powder creates nonuniform radial distribution of the gas velocity as an “M-type” curve and greatly restricts the gas jet flowing along the nozzle axis, which results in the smaller gas flow velocity but slower velocity attenuation. These phenomena become increasingly remarkable as the powder particle size is decreased or the powder mass flowrate is increased. The particles are accelerated but the acceleration declines gradually along the nozzle axis. The greater powder mass flowrate or particle size induces the lower particle velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.P. Singh and M.J. Mcnallan: Metal. Trans. B, 1982, vol. 14B, pp. 425-34.

    Google Scholar 

  2. E.V. Protopopov, T.R. Galiullin, A.G. Chernyatevich and P.S. Kharlashin: Steel in Translation, 2009, vol. 39, pp. 295-99.

    Article  Google Scholar 

  3. T. Itaoka: Nippon Kokan Tech. Rep., 1979, vol. 82, pp. 229-37.

    Google Scholar 

  4. M. Kishida, Y. Nishio, S. Cho, S. Wakabayshi, K. Saito, G. Monma and N. Kimura: Tetsu-to-Hagané, 1965, vol. 51, pp. 1937–38.

    Google Scholar 

  5. M. Kishida, Y. Nishio, H. Maeda and N. Maeda: Tetsu-to-Hagané, 1966, vol. 52, pp. 1481-83.

    Article  Google Scholar 

  6. H. Nashiwa, S. Yamaguchi, M. Sato, K. Ieda, M. Ishikawa and Y. Ohkita: Tetsu-to-Hagané, 1982, vol. 68, pp. S203.

    Google Scholar 

  7. T. Aoki, T. Matsuo, S. Masuda, T. Kishida, K. Katohgi, Y. Matsumura and Y. Ohkita: Tetsu-to-Hagané, 1984, vol. 70, pp. S190.

    Article  Google Scholar 

  8. K. Taoka, T. Imai, M. Kuga, R. Tachibana, M. Ohnishi and J. Nagai: Kawasaki Steel Giho, 1983, vol. 15, pp. 120.

    Google Scholar 

  9. D.D. Ezzat: Int. J. Multiphase Flow, 1985, vol. 11, pp. 445-58.

    Article  Google Scholar 

  10. C.K. Lun and H.S. Liu: Int. J. Multiphase Flow, 1997, vol. 23, pp. 575-605.

    Article  Google Scholar 

  11. A. Kapil and N.L. Peter: J. Fluid Mech., 2001, vol. 445, pp.151-85.

    Article  Google Scholar 

  12. L.S. Fan, C. Zhu and A. Varma: Principles of Gas-Solid Flows, Cambridge University Press, Cambridge, 2005.

    Google Scholar 

  13. M.B. Stakić, G.S. Živković and M.A. Sijerčić: Int. J. Heat Mass Tran., 2011, vol. 54, pp. 2262-69.

    Article  Google Scholar 

  14. Z. Miao, S.B. Kuang, H. Zughbiand, A.B. Yu: Powder Technol., 2019, 349, 70-83.

    Article  CAS  Google Scholar 

  15. C.T. Crowe, D.F. Elger and J.A. Roberson: Engineering Fluid Mechanics, Wiley, Hoboken, 2000.

    Google Scholar 

  16. S. Okuda and W.S. Choi: J. Chem. Eng. Jpn., 1978, vol. 11, pp. 432-38.

    Article  CAS  Google Scholar 

  17. N. Hatta, H. Fujimoto, R. Ishll, Y. Umeda and J. Kokado: ISIJ Int., 1989, vol. 29, pp. 911-18.

    Article  CAS  Google Scholar 

  18. Y.C. Peng and T. Han: ISIJ Int., 1996, vol. 36, pp. 263-68.

    Article  CAS  Google Scholar 

  19. Y.M. Lee and R.A. Berry: J. Therm. Spray. Techn., 1994, vol. 3, pp.179-83.

    Article  CAS  Google Scholar 

  20. M. Miyata and Y. Higuchi: ISIJ Int., 2017, Vol. 57, pp. 1742-50.

    Article  CAS  Google Scholar 

  21. J.G. Sun, H.D. Kim, J.O. Park and Y.Z. Jin: Open Journal of Fluid Dynamics, 2012, vol. 2, pp. 242-47.

    Article  CAS  Google Scholar 

  22. P. Pakseresht and S.V. Apte: Int. J. Multiphase Flow, 2019, vol. 113, pp. 16-32.

    Article  CAS  Google Scholar 

  23. M.M. Li, Q. Li, S.B. Kuang and Z.S. Zou: Steel Res. Int., 2015, vol. 86, pp. 1517-29.

    Article  CAS  Google Scholar 

  24. FLUENT 14.0 Manual, Ansys Inc., Canonsburg, PA, 2011.

  25. S.A. Morsi and A.J. Alexander: J. Fluid Mech.. 1972, vol. 55, pp. 193-208.

    Article  Google Scholar 

  26. M. Alam, J. Naser, and G. Brooks: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 636-45.

    Article  CAS  Google Scholar 

  27. M. Alam, J. Nader, G. Brooks and A. Fontana: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 1354-67.

    Article  Google Scholar 

  28. W.J. Wang, Z.F. Yuan, H. Matsuura, H.X. Zhao, C. Dai and F. Tsukihashi: ISIJ Int., 2010, vol. 50, pp. 491-500.

    Article  CAS  Google Scholar 

  29. M.M. Li, Q. Li, L. Li, Y.B. He and Z.S. Zou: Ironmak. Steelmak., 2014, vol. 41, pp. 699-709.

    Article  CAS  Google Scholar 

  30. M.M. Li, Q. Li, Z.S. Zou and X.Z. An: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 713-25.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (Grant No. 51904062), the Beijing Natural Science Foundation of China (Grant No. 2172057), the China Postdoctoral Science Foundation (Grant No. 2019M650056) and the Fundamental Research Funds of the Central Universities of China (Grant Nos. N172503014, N2025015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 10, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, L., Zhang, B. et al. Numerical Analysis of the Particle-Induced Effect on Gas Flow in a Supersonic Powder-Laden Oxygen Jet. Metall Mater Trans B 51, 1718–1730 (2020). https://doi.org/10.1007/s11663-020-01855-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01855-3

Navigation