Skip to main content

Advertisement

Log in

Kinetic Studies of the Reduction of Limonitic Nickel Ore by Hydrogen

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A sample of limonitic nickel ore was characterized by XRD, SEM-EDS, and ICP-OES techniques. The Rietveld refinement method showed that the main mineral constituent of this sample is goethite (55.8 pct). Thermal analysis experiments were performed and the determination of the goethite content in the sample could be confirmed by the mass loss associated to the dehydroxylation of this mineral at temperature of ≈ 150 °C. After thermal decomposition, the sample was reduced in a rotary kiln using hydrogen and subsequent characterization showed that for low temperatures (400 °C ≤ T < 550 °C) the main chemical reaction is the reduction of hematite to magnetite. At high temperatures (500 °C ≤ T < 800 °C), metallic iron could be identified in the solid product of the reaction by XRD technique and reduction of hematite to metallic iron was the main chemical reaction identified at this temperature. In addition to metallic iron, tetrataenite was identified and quantified in the reduced sample at high temperature (T > 600 °C) and the results suggest that most of the nickel is in this mineral phase. The shrinking core model was used for the kinetic studies of the reduction process and for the reduction of hematite to magnetite at low temperature (T ≤ 550 °C). The slow step was diffusion of reagent (H2) or product (H2O) through the reduced solid product layer on the particle surface, the apparent activation energy calculated for the reaction was 46.2 kJ. For the reduction of hematite to metallic iron at high temperature (T ≥ 550 °C), the slow step was the reaction of hydrogen with hematite at the reaction surface of the particle, and the apparent activation energy achieved by the chemical reaction was 29.5 kJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. [1] A. Oxley, M.E. Smith, O. Caceres: Minerals Engineering, 2016, vol. 88, pp. 53-60.

    CAS  Google Scholar 

  2. H.T.B.M. Petrus, A.D.P. Putera, I.P. EdiSugiarto, I.W. Warmada, F. Nurjaman, W. Astuti, A.T. Mursito: Miner. Eng., 2019, vol. 132, pp. 126-133.

    CAS  Google Scholar 

  3. [3] D. Zhu, L. Pan, Z. Guo, J. Pan, F. Zhang: Advanced Powder Technology, 2019, vol. 30, pp. 451-460.

    CAS  Google Scholar 

  4. [4] J. Yang, G. Zhang, O. Ostrovski, S. Jahanshahi: Minerals Engineering, 2019, vol 131, pp. 79-89.

    CAS  Google Scholar 

  5. [5] A. Garces-Granda, G.T. Lapidus, O.J. Restrepo-Baena: Minerals Engineering, 2018, vol. 120, pp. 127-131.

    CAS  Google Scholar 

  6. [6] Ş. Kaya, Y.A. Topkaya: Minerals Engineering, 2011, vol. 24, pp. 1188-1197.

    CAS  Google Scholar 

  7. [7] C.A. Pickels, W. Anthony: Minerals Engineering, 2018, vol. 120, pp. 47-59.

    Google Scholar 

  8. [8] A. Oxley, N. Barcza: Minerals Engineering, 2013, vol. 54, pp. 2-13.

    CAS  Google Scholar 

  9. [9] A.R. Burkin: Extractive metallurgy of nickel, John Wiley & Sons, New York, 1987.

    Google Scholar 

  10. F. Crundwell, M. Moats, V. Ramachandran, T. Robinson, W.G. Davenport: Extractive Metallurgy of Nickel, Cobalt and Platinum-Group Metals, 1st edo. Elsevier, Amsterdam, 2011.

    Google Scholar 

  11. [11] D.M. B. I. Whittington: Mineral Processing and Extractive Metallurgy Review, 2000, vol. 21, pp. 527-600.

    Google Scholar 

  12. A.B.D.P. PratimaMeshram: Miner. Process. Extract. Metall. Rev., 2019, vol. 40, pp. 157-193.

    Google Scholar 

  13. [13] G.M. Mudd: Ore Geology Reviews, 2010, vol. 38, pp. 9-26.

    Google Scholar 

  14. [14] A. Garces-Granda, G.T. Lapidus, O.J. Restrepo-Baena: Minerals Processing and Extractive Metallurgy, 2018, vol. 120, pp. 127-131.

    CAS  Google Scholar 

  15. [15] R. Elliott, C.A. Pickles, J. Peacey: Minerals Engineering, 2017, vol. 100, pp. 166-176.

    CAS  Google Scholar 

  16. [16] C.A. Pickles, J. Forster, R. Elliott: Minerals Engineering, 2014, vol. 65, pp. 33-40.

    CAS  Google Scholar 

  17. [17] D. Yu, M. Zhu, T.A. Utigard, M. Barati: Minerals Engineering, 2013, vol. 54, pp. 32-38.

    CAS  Google Scholar 

  18. [18] J. Yang, G. Zhang, O. Ostrovski, S. Jahanshahi: Minerals Engineering, 2013, vol. 54, pp. 110-115.

    Google Scholar 

  19. [19] M. Rao, G. Li, T. Jiang, J. Luo, Y. Zhang, X. Fan: The Minerals, Metals & Materials Society, 2013, vol. 65, pp. 1573-1583.

    CAS  Google Scholar 

  20. [20] Y.-j. Li, Y.-s. Sun, Y.-x. Han, P. Gao: Transactions of Nonferrous Metals Society of China, 2013, vol. 23, pp. 3428-3433.

    CAS  Google Scholar 

  21. [21] B. Li, Y.G. Wei, H. Wang: Minerals Processing and Extractive Metallurgy, 2013, vol. 122, pp. 249-257.

    CAS  Google Scholar 

  22. [22] D.Q. Zhu, Y. Cui, K. Vining, S. Hapugoda, J. Douglas, J. Pan, G.L. Zheng: International Journal of Mineral Processing, 2012, vol. 106–109, pp. 1-7.

    Google Scholar 

  23. [23] M. Samouhos, M. Taxiarchou, R. Hutcheon, E. Devlin: Minerals Engineering, 2012, vol. 34, pp. 19-29.

    CAS  Google Scholar 

  24. [24] A. Bunjaku, M. Kekkonen, P. Taskinen: Minerals Processing and Extractive Metallurgy, 2012, vol. 121, pp. 16-22.

    CAS  Google Scholar 

  25. [25] J. Kim, G. Dodbiba, H. Tanno, K. Okaya, S. Matsuo, T. Fujita: Minerals Engineering, 2010, vol. 23, pp. 282-288.

    CAS  Google Scholar 

  26. [26] J. Li, X. Li, Q. Hu, Z. Wang, Y. Zhou, J. Zheng, W. Liu, L. Li: Hydrometallurgy, 2009, vol. 99, pp. 84-88.

    CAS  Google Scholar 

  27. [27] F. O’Connor, W.H. Cheung, M. Valix: International Journal of Mineral Processing, 2006, vol. 80, pp. 88-99.

    Google Scholar 

  28. [28] T.A. Utigard, M. Wu, G. Plascencia, T. Marin: Chemical Engineering Science, 2005, vol. 60, pp. 2061-2068.

    CAS  Google Scholar 

  29. [29] S.K. Sharma, F.J. Vastola, P.L. Walker Jr: Carbon, 1996, vol. 34, pp. 1407-1412.

    CAS  Google Scholar 

  30. K. Okamoto, Y. Ueda, and F. Noguchi: On the Mechanism of Nickel Segregation from Garnierite Ore, Kyushu Institute of Technology Academic Repository, 1970, pp. 23–40. https://core.ac.uk/download/pdf/147423683.pdf. Accessed 10 Apr 2020.

  31. K. Okamoto, Y. Ueda, and F. Noguchi: Extraction of Nickel from Garnierite Ore by the Segregation-Magnetic Separation Process, Kyushu Institute of Technology Academic Repository, 1970, pp. 41–61. https://kyutech.repo.nii.ac.jp/?action=pages_view_mainactive_action=repository_view_main_item_detailitem_id=1846item_no=1page_id=13block_id=21. Accessed 10 Apr 2020.

  32. S.L. JieLu, J Shangguan, W Du, F Pan, S Yang: Miner. Eng., 2013, vol. 49, pp. 154-164.

    Google Scholar 

  33. [33] C. Sheng-li, G. Xue-yi, S. Wen-tang, L. Dong: Journal of Central South University Technology, 2010, vol. 17, pp. 765-769.

    Google Scholar 

  34. [34] S. Zhou, Y. Wei, B. Li, H. Wang, B. Ma, C. Wang: Scientific Reports, 2016, vol. 6, pp. 1-11.

    Google Scholar 

  35. [35] M. Jiang, T. Sun, Z. Liu, J. Kou, N. Liu, S. Zhang: International Journal of Mineral Processing, 2013, vol. 123, pp. 32-38.

    CAS  Google Scholar 

  36. [36] B. Ma, C. Wang, W. Yang, F. Yin, Y. Chen: Minerals Engineering, 2013, vol. 50–51, pp. 106-113.

    Google Scholar 

  37. V.A. Oliveira, C.G.D. Santos, E.A. Brocchi: Metall. Mater. Trans. B, 2019 vol. 50B, pp. 1309-1321.

    Google Scholar 

  38. [38] M. Landers, R.J. Gilkes: Applied Clay Science, 2007, vol. 35, pp. 162-172.

    CAS  Google Scholar 

  39. [39] C.A. Pickles, R. Elliott: Minerals Processing and Extractive Metallurgy, 2015, vol. 00, pp. 1-9.

    Google Scholar 

  40. DiplKrist, G. S. (1972) Kristall und Technik, vol. 7, pp. 235-46.

    Google Scholar 

  41. [41] E. Zepeda-Alarcon, H. Nakote, A.F. Gualtieri, G. King: Journal of Applied Crystallography, 2014, vol. 47, pp. 1983-1991.

    CAS  Google Scholar 

  42. V.G. Tsirel'Son, M.Y. Antipin, V.A. Strel’Tsov, R.P. Ozerov, Y.T. Struchkov: Soviet Phys. Doklady, 1988, vol. 33, pp. 1137–1141.

    Google Scholar 

  43. S.M. E., D.C. Kim: Z Metallkunde, 1969, vol. 69, pp. 272-77.

  44. [44] M.E. Fleet: Journal of Solid State Chemistry, 1986, vol. 62, pp. 75-82.

    CAS  Google Scholar 

  45. H. D’amour, W. Denner, H. Schulz: Acta Crystallogr. Sect. B, 1979, vol. B35, pp. 550–55. https://doi.org/10.1107/S056774087900412X.

    Article  Google Scholar 

  46. T. Tagai, H. Takeda, T. Fukuda: Z. fur Kristallogr., 1995, vol. 210 (1), pp. 14–18. https://doi.org/10.1524/zkri.1995.210.1.14.

    Article  CAS  Google Scholar 

  47. [47] A. Yamamoto: Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1982, vol. 38, pp. 1451-1456.

    Google Scholar 

  48. [48] K. Kihara, G. Donnay: The Canadian Mineralogist, 1985, vol. 23, pp. 647-654.

    CAS  Google Scholar 

  49. A.D.D.W.G.B.R.C. Osborne: The Past and the Future of Nickel Laterites. PDAC 2004 International Convention, Trade Show & Investors Exchange Toronto, 2004, pp. 1–27.

  50. [50] B.B.K. Y. V. Swamy, J. K. Mohanty: Hydrometallurgy, 2003, vol. 69, pp. 89-98.

    CAS  Google Scholar 

  51. [51] H. Liu, T. Chen, X. Zou, C. Qing, R.L. Frost: Thermochimica Acta, 2013, vol. 568, pp. 115-121.

    CAS  Google Scholar 

  52. [52] B.Z. Dlugogorski, R.D. Balucan: Renewable and Sustainable Energy Reviews, 2014, vol. 31, pp. 353-367.

    CAS  Google Scholar 

  53. V.D. EnioLima, P F. P. Fichtner, P H. P. Domingues: Solid State Commun., 2003, vol. 128, pp. 345-350.

    Google Scholar 

  54. [54] D.B.W. C. W. Yang, J. I. Goldstein: Journal of Phase Equilibria, 1996, vol. 17, pp. 522-531.

    CAS  Google Scholar 

  55. [55] B. Janković, B. Adnađević, S. Mentus: Chemical Engineering Science, 63 (2008) 567-575.

    Google Scholar 

  56. [56] B. Li, Y.-g. Wei, H. Wang: Transactions of Nonferrous Metals Society of China, 2014, vol. 24, pp. 3710-3715.

    CAS  Google Scholar 

  57. [57] M.H. Jeong, D.H. Lee, J.W. Bae: International Journal of Hydrogen Energy, 2015, vol. 40, pp. 2613-2620.

    CAS  Google Scholar 

  58. [58] H.-Y. Lin, Y.-W. Chen, C. Li: Thermochimica Acta, 2003, vol. 400, pp. 61-67.

    CAS  Google Scholar 

  59. [59] A. Pineau, Ş. Kaya, I. Gaballah: Thermochimica Acta, 2007, vol. 456, pp. 75-88.

    CAS  Google Scholar 

  60. [60] A. Pineau, N. Kanari, I. Gaballah: Thermochimica Acta, 2006, vol. 447, pp. 89-100.

    CAS  Google Scholar 

  61. E.F. ParvizPourghahramani: Thermochim. Acta, 2007, vol. 454, pp. 69-77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor de Alvarenga Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 17, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Alvarenga Oliveira, V., de Jesus Taveira Lana, R., da Silva Coelho, H.C. et al. Kinetic Studies of the Reduction of Limonitic Nickel Ore by Hydrogen. Metall Mater Trans B 51, 1418–1431 (2020). https://doi.org/10.1007/s11663-020-01841-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01841-9

Navigation