Skip to main content

Advertisement

Log in

Physical Simulation and Industrial Testing of Bottom-Blown O2-CaO Converter for Steelmaking Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Bottom-blowing O2-CaO steelmaking technology has numerous advantages such as low iron and steel consumptions, low dust emissions, and molten steel cleanliness. Responsive to a weak stirring and high iron oxide slag in a 120-ton conventional “combined blowing” converter in a factory, a cold model of bottom-blowing O2-CaO was designed. Bottom-blowing and top-blowing parameters on the mixing effect of bottom-blowing O2-CaO converter were studied. Two symmetrical points on 0.4R trunnion connection of the bottom-blowing converter were sought as the optimum hole location. The total flow rate of bottom–blowing and top-blowing was 8.2 and 75 Nm3/h, respectively. The optimum top-blowing position was 400 mm and the optimum solid–gas ratio was found to be 9.0. The optimum scheme under laboratory conditions was converted and applied to a 120-ton bottom-blown O2-CaO converter; subsequently, hundred industrial tests were performed. The stirring strength of the molten bath was enhanced remarkably and the metallurgical effect was improved remarkably. Carbon and oxygen product of the end-point molten steel was reduced by 5.87 × 10−4 while the iron oxide content in the final slag was reduced by 1.99 pct. This laid a foundation for industrial applications of the bottom-blown O2-CaO converter steelmaking technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Holappa L: Mineral Processing and Extractive Metallurgy, 2019, 128(1-2): 3-16.

    CAS  Google Scholar 

  2. Zhou Wang, Feiming Xie, Bin Wang, et al: Steel Research International, 2014, 85(4):599-606.

    CAS  Google Scholar 

  3. Kaike Cai: Iron & Steel, 2009, 44(5): 27-31.

    CAS  Google Scholar 

  4. SC Koria: Canadian Metallurgical Quarterly, 1992, 31(2): 105-112.

    CAS  Google Scholar 

  5. AK Shukla, B Deo, S Millman, et al: Steel Research International, 2010, 81(11): 940-948.

    CAS  Google Scholar 

  6. W Xiong, G Li, Z Chen, et al: Chinese Journal of Process Engineering, 2009, 9(S1): 369–73.

    Google Scholar 

  7. Wei Wu, Zongshu Zou, Zhenhe Guo, et al: Journal of Iron & Steel Research, 2004, 16(1): 21-24.

    Google Scholar 

  8. Savard G, Lee R. Campbell M R: JOM, 1960, 12(7): 566-569.

    Google Scholar 

  9. Kai Dong, Rong Zhu, Wenjuan Liu: Advanced Materials Research, 2012, 361-363: 639-643.

    Google Scholar 

  10. A.L. Aleksashin, I. Schnaltzger, G. Hollias: Metallurgist, 2007, 51(1-2): 60-65.

    CAS  Google Scholar 

  11. B. Tang, X. Wang, Z. Zou, et al: Canadian Metallurgical Quarterly, 2016, 55(1): 124-130.

    CAS  Google Scholar 

  12. H. Ono, T. Masui, H. Mori: Trans. Iron Steel Inst. Jpn, 1985, 25(2): 133-141.

    CAS  Google Scholar 

  13. Xiaobin Zhou, Mikael Ersson, Liangcai Zhong, et al: Metallurgical & Materials Transactions B, 2016, 47(1): 434-445.

    Google Scholar 

  14. BL Farrand, T Wyatt: Iron and Steelmaker, 1990, 17(11): 52-7.

    CAS  Google Scholar 

  15. H. Gou, G.A. Irons, W.K. Lu: EG and G Idaho, Inc., Idaho Falls, ID (United States); McMaster Univ., Hamilton, ON (Canada). Dept. of Materials Science and Engineering, 1992.

  16. H. Gou, G.A. Irons, W.K. Lu: Metallurgical Transactions B, 1993, 24(1): 179-188.

    CAS  Google Scholar 

  17. B.L Farrand, J.E. Wood, and F.J. Goetz. Dofasco, Inc., Hamilton, ON, Canada, 1992, pp. 173–79. https://www.osti.gov/biblio/10146986.

  18. D.S. Liao, Sun S, Waterfall S, et al: Proc. 6th Int. Cong. Sci. Technol. Steelmaking, Beijing, China, 2015, 12–14.

  19. Lihua Guan, Shikai Qi, Kaiwen Deng: Iron and Steel, 1982, 17(8):14-20.

    Google Scholar 

  20. Chenglin Zhao, Jianwei Li, Zongshu Zou, et al: China Metallurgy, 2006, 16(8): 1-1.

    Google Scholar 

  21. Dong Xu, Daqiang Cang, Lixue Qin, et al: Journal of University of Science and Technology Beijing, 2012, 34(9): 1065-1071.

    Google Scholar 

  22. Y Li: Gangtie, 1980, 3: 1–9.

    Google Scholar 

  23. N.B. Ballal, A.Ghosh: Metallurgical and Materials Transactions B, 1981, 12(3):525-534.

    CAS  Google Scholar 

  24. Dongxing Wang, Yan Liu, Zimu Zhang, et al: AIP Conference Proceedings. American Institute of Physics, 2013, 1542(1): 1304-1307.

    CAS  Google Scholar 

  25. G. Wen, P. Tang, and G. Yan: J. Chongqing Univ., 1991, vol. 6, pp. 31–37.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science 240 Foundation of China (Grant Nos. 51574021 and 51474024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 23, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhu, R., Dong, K. et al. Physical Simulation and Industrial Testing of Bottom-Blown O2-CaO Converter for Steelmaking Process. Metall Mater Trans B 51, 1060–1069 (2020). https://doi.org/10.1007/s11663-020-01823-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01823-x

Navigation