Skip to main content
Log in

Effect of Argon Blowing Rate on Multiphase Flow and Initial Solidification in a Slab Mold

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The multiphase flow, heat transfer, and initial solidification behaviors in a 230 × 1300 mm2 continuous casting slab mold under different argon blowing rates were investigated by a multi-physical model. Water model experiments were conducted to validate the numerical models. The results showed that the simulated steel/slag level fluctuation and argon bubble trajectories were basically consistent with the experimental results. Only the bubbles less than 1 mm were dragged to the narrow face, while larger bubbles were more likely to escape from the free surface. When the argon blowing rate increased from 0 to 15 L/min, the impact depth of the molten steel decreased. The velocity and level fluctuation range near the submerged entry nozzle (SEN) first decreased and then increased. Moreover, the largest level fluctuation decreased to 4 mm when the argon blowing rate was 5 L/min. Meanwhile, the solidified shell thickness at narrow face of mold outlet decreased from 12.5 to 6.7 mm and became too thin to easily break out when argon blowing rate reached over 10 L/min. By comprehensively considering the multiphase flow, heat transfer, and solidification behavior in the mold, the proper argon blowing rate range should be 5 L/min, by which the disqualification rate of inclusion at strip edge can be decreased from 4.28 to 1.75 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Q. Fang, H. Ni, B. Wang, H. Zhang, and F. Ye: Metals, 2017, vol. 7, Article No. 72.

  2. B.G. Thomas: Steel Res. Int., 2018, vol. 89, Article No. 1700312.

  3. 3 J. Yang, Z. Cai and M. Zhu: ISIJ Int., 2018, vol. 58, pp. 299-308.

    Article  CAS  Google Scholar 

  4. T. Zhang, J. Yang, and P. Jiang: Metals, 2019, vol. 9, Article No. 36.

  5. W. Zhang, S. Luo, Y. Chen, W. Wang, and M. Zhu: Metals, 2019, vol. 9, Article No. 66.

  6. 6 B. Yang, J. Li, L.W. Zhang, Y. Zhang, Y. Cui and C.J. Xu: Tehnički vjesnik, 2019, vol. 26, pp. 566-570.

    Google Scholar 

  7. 7 S.M. Cho, B.G. Thomas and S.H. Kim: Metall. Mater. Trans. B, 2019, vol. 50, pp. 52-76.

    Article  Google Scholar 

  8. L. Jin, J. Cheng, and H. Shen: Metall. Res. Technol., 2017, vol. 114, Article No. 103.

  9. 9 Z. Liu, Z. Sun and B. Li: Metall. Mater. Trans. B,, 2017, vol. 48(2),pp. 1248-1267.

    Article  Google Scholar 

  10. S. Li, P. Lan, H. Tang, Z. Tie, and J. Zhang: Steel Res. Int., 2018, vol. 89, Article No. 1800071.

  11. M. Long, H. Chen, D. Chen, S. Yu, B. Liang, and H. Duan: Metals, 2018, vol. 8, Article No. 182.

  12. 12 T. Zhang, Z. Luo, H. Zhou, B. Ni and Z. Zou: ISIJ Int., 2016, vol. 56, pp. 116-125.

    Article  CAS  Google Scholar 

  13. 13 X. Li, B. Li, Z. Liu, R. Niu, Y. Liu, C. Zhao, C. Huang, H. Qiao and T. Yuan: Metals, 2019, vol. 9, 7.

    Article  CAS  Google Scholar 

  14. Z. Liu, B. Li, A. Vakhrushev, M. Wu, and A. Ludwig: Steel Res. Int., 2019, vol. 90, Article No. 1800117.

  15. W. Chen, Y. Ren, and L. Zhang: Steel Res. Int., 2019, vol. 90, Article No. 1800287.

  16. 16 Z. Liu, B. Li, F. Qi and S. C. P. Cheung: Powder Technology, 2017, vol. 319, pp. 139-147.

    Article  CAS  Google Scholar 

  17. 17 H. Zhang, Q. Fang, T. Xiao, H. Ni and C. Liu: ISIJ Int., 2019, vol. 59, pp. 86-92.

    Article  CAS  Google Scholar 

  18. 18 W. Chen, Y. Ren, L. Zhang and P.R. Scheller: JOM, 2019, vol. 71, pp. 1158-1168.

    Article  CAS  Google Scholar 

  19. 19 S. Zheng and M. Zhu: Int. J. Min. Met. Mater., 2010, vol. 17, pp. 704-708.

    Article  CAS  Google Scholar 

  20. 20 Z. Liu, B. Li and M. Jiang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 675-697.

    Article  Google Scholar 

  21. 21 Z. Liu, F. Qi, B. Li, and S. C. P. Cheung: International Journal of Multiphase Flow, 2016, vol. 79, pp.190–201.

    Article  CAS  Google Scholar 

  22. 22 C. Cheng, H. Lu, Y. Li, X. Qing and Y. Jin: ISIJ Int., 2019, vol. 59, pp. 1266-1275.

    Article  CAS  Google Scholar 

  23. 23 B. Ren, D. Chen, H. Wang, M. Long and Z. Han: Ironmak. Steelmak., 2015, vol. 42, pp. 401-408.

    Article  CAS  Google Scholar 

  24. ANSYS Fluent 15.0 Theory Guide, Southpointe, 2013.

  25. 25 H. Zhang, C. Liu, Q. Fang, Y. Wang, H. Ni and C. Liu: Ironmak. Steelmak., 2019, https://doi.org/10.1080/03019233.2019.1665909.

    Article  Google Scholar 

  26. 26 Z. Liu, L. Li, B. Li and M. Jiang: JOM, 2014, vol. 66, pp. 1184-1196.

    Article  CAS  Google Scholar 

  27. 27 H. Zhang, Q. Fang, R. Luo, C. Liu and H. Ni: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1461-1475.

    Article  Google Scholar 

  28. 28 J. Savage and W.H. Pritchard: Journal of the Iron and Steel Institute, 1954, vol. 178, pp. 269-277.

    Google Scholar 

  29. 29 R..D. Morales, A.G. López and I.M. Olivares: ISIJ Int., 1990, vol. 30, pp. 48-57.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude for the financial support provided by the National Natural Science Foundation of China (51774217) and (51604201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Fang or Hua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 28, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Fang, Q., Zhang, H. et al. Effect of Argon Blowing Rate on Multiphase Flow and Initial Solidification in a Slab Mold. Metall Mater Trans B 51, 1088–1100 (2020). https://doi.org/10.1007/s11663-020-01804-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01804-0

Navigation