Skip to main content
Log in

Study on Liquidus Temperature of NaF-KF-LiF-AlF3 System with Low Cryolite Ratio

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Development of an energy-efficient method for aluminum manufacturing is the current research trend in the aluminum electrolysis industry. A low-temperature electrolysis process is an appropriate choice for aluminum electrolysis. The NaF-KF-LiF-AlF3 system with its low cryolite ratio may be a suitable candidate electrolyte system because of its reduced liquidus temperature. In this paper, the liquidus temperature of NaF-KF-LiF-AlF3 system with cryolite ratios of 1.3 and 1.4 is investigated via the cooling curve method and the differential thermal analysis method. The effects of both potassium fluoride and lithium fluoride on the NaF-KF-LiF-AlF3 system are studied. The liquidus curves of systems containing potassium fluoride and lithium fluoride are different and depend on the KF/(NaF+KF+LiF) and LiF/(NaF+KF+LiF) ratios. Part of the (NaF-LiF-AlF3)-KF pseudo-binary phase diagram with fixed LiF concentration is plotted according to the data of liquidus temperature and the compositions of the phase diagram containing potassium fluoride and lithium fluoride with a cryolite ratio of 1.3 are analyzed. The change trend of the compositions is similar to the NaF-KF-AlF3 system with a low cryolite ratio. LiF hardly participate in the formation of the compounds at equilibrium state except for the fact that chiolite is the main composition of molten salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Kvande and Drabløs. P . A, Journal of occupational and environmental medicine, 2014, vol. 56, pp. S23-S32.

    Article  CAS  Google Scholar 

  2. A. Sterten, S. Rolseth and E. Skybakmoen: Light Metals, TMS, Warrendale, 1988, pp. 663.

    Google Scholar 

  3. N. X. Feng. Aluminum Electrolysis, Chemical Industry Press, Beijing,, 2006, pp. 21.

    Google Scholar 

  4. P. Fellner, S. Midtlyng, A. Sterten, J. Thonstad: Journal of applied electrochemistry, 1993, vol. 23, pp. 78-81.

    Article  CAS  Google Scholar 

  5. A. Redkin, A .Apisarov, A .Dedyukhin, V. Kovrov: ECS Transactions, 2013, vol. 50, pp. 205-213.

    Article  Google Scholar 

  6. J. Yang, D.G. Graczyk, C. Wunsch, J. N. Hryn: Light Metals, TMS, Warrendale, 2007, pp. 537-541.

    Google Scholar 

  7. A. Apisarov, A. Dedyukhin, E. Nikolaeva, P. Tinghaev, O. Tkacheva, A. Redkin and Y. Zaikov: Metallurgical and Materials Transactions B, 2011, vol. 42, pp. 236-242.

    Article  Google Scholar 

  8. H. Yan, J .Yang, W. Li and S. Z. Chen: Metallurgical and materials Transactions B, 2011, vol. 42, pp. 1065-1070.

    Article  Google Scholar 

  9. J. P. Peng, Y. Z. Di, Y. W. Wang, Y. B. Bai, N. X. Feng: Journal of Mining & Metallurgy. Section B: Metallurgy, 2014, vol. 50, pp. 23-26.

    Article  CAS  Google Scholar 

  10. X. Lv, Y. Shuang, J. Li, S. Y. Chen, Y. Q. Lai, H. L. Zhang and Y. X. Liu: Metallurgical and Materials Transactions B, 2017, vol. 48, pp. 1315-1320.

    Article  Google Scholar 

  11. Y. G. Huang, Z .L .Tian, Y. Q. Lai, J. Li and Y. X. Liu: The Chinese Journal of Nonferrous Metals, 2010, vol. 5, pp. 903-906.

    Google Scholar 

  12. V. Danielik: Chemical papers, 2005, vol. 59 pp. 81-84.

    CAS  Google Scholar 

  13. J. Híveš, Å. Thonstad, P. Sterten: Light Metals, TMS, Warrendale, 1994, pp. 187-194.

    Google Scholar 

  14. J. Gabèová, M. Marko and P. Fellner: Chem. Papers, 1995, vol. 49, pp. 13.

    Google Scholar 

  15. P. Cui, B. Qin, G. M. Haarberg: Journal of The Electrochemical Society, 2019, vol. 166, pp. D559-D563.

    Article  CAS  Google Scholar 

  16. B. Kubikova, J. Mlynáriková, M. Boča, Z. N. Shi, B. L.GaO, N. Petel: Journal of Chemical & Engineering Data, 2018, vol. 63, pp. 3047-3052.

    Article  CAS  Google Scholar 

  17. Z. Wei, J. Peng, Y. Wang, K. J. Liu, Y. Z. Di, T. Sun: Ionics, 2019, vol. 25, pp. 1735-1745.

    Article  CAS  Google Scholar 

  18. J. Peng, Z. Wei, Y. Z. Di, Y. Wang, and T. Sun.: JOM 72:239-246 (2019).

    Article  Google Scholar 

  19. Z. Vasková, M. Kontrík, J. Mlynáriková and M. Boca: Metallurgical and Materials Transactions B, 2015, vol. 46, pp. 485-493.

    Google Scholar 

  20. D.F. Craig and J. J. Brown: J. Am. Ceram. Soc., 1980, vol. 63, pp. 254–261.

    Article  CAS  Google Scholar 

  21. A. S. Samoilo, Y. N. Zaitseva, P. S. Dubinin, O. E. Piksina, S. G. Ruzhnikov, I. S. Yakimov and S.D. Kirik: Journal of Solid State Chemistry, 2017, vol. 252, pp. 1-7.

    Article  CAS  Google Scholar 

  22. E. W. Dewing, Proceedings of the 5th International Symposium on Molten Salts, The Electrochemical Society Inc, Pennington, 1986, pp. 262.

Download references

Acknowledgments

We acknowledge the support received from the National Natural Science Foundation of China (Grant Nos. 51774080 and 51434005) and National Key R&D Program of China (2018YFC1901905) and Fundamental research funds for the central universities (No. 162502002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianPing Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 31, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Peng, J., Wang, Y. et al. Study on Liquidus Temperature of NaF-KF-LiF-AlF3 System with Low Cryolite Ratio. Metall Mater Trans B 51, 1181–1189 (2020). https://doi.org/10.1007/s11663-020-01800-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01800-4

Navigation