Skip to main content

Al-Monohydrate (Boehmite) to Al-Trihydrate (Bayerite/Gibbsite) Transformation During High-Energy Milling


The specific focus of this study is on the boehmite–water interaction during attrition milling of a boehmite prepared by thermal dehydroxylation of gibbsite. Various characterization studies confirm the formation of a new phase, bayerite (an Al-trihydroxide polymorph) during milling of boehmite with water as the dispersant. Bayerite is a more stable (thermodynamically) phase than boehmite. By forming bayerite, the free energy of the interacting system (consisting of disordered metastable boehmite and water) gets reduced. Such a transformation is of relevance in the digestion of Al-monohydrates in the Bayer process of alumina production. Furthermore, the presence of water during attrition milling itself is essential for the transformation. Bayerite does not form during attrition milling of the same boehmite in ethyl alcohol media and subsequent soaking in water up to 36 hours. Therefore, bayerite formation does not depend solely on structural degradation.

This is a preview of subscription content, access via your institution.

Fig. 1

Reprinted with permission from [17]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Adapted from Ref. [11]

Fig. 9
Fig. 10

Adapted from Refs. [40] and [41]


  1. 1.

    A.Z. Juhasz: Mechanical Activation of Minerals by Grinding. Pulverizing and Morphology of Practicles, Akadémiai Kiadó, Budapest, 1990

    Google Scholar 

  2. 2.

    T.C. Alex, R. Kumar, S.K. Roy, and S.P. Mehrotra: Adv. Powder Technol., 2008, vol. 19, pp. 483–91.

    CAS  Article  Google Scholar 

  3. 3.

    T.C. Alex, R. Kumar, S.K. Roy, and S.P. Mehrotra: Miner. Process. Extr. Metall. Rev., 2016, vol. 37, pp. 1–26.

    CAS  Article  Google Scholar 

  4. 4.

    R. Kumar, S. Kumar, S. Badjena, and S.P. Mehrotra: Metall. Mater. Trans. B 2005, 36, 873–83.

    CAS  Article  Google Scholar 

  5. 5.

    H. Ding, S.C. Lu, and G.X. Du: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 83–88.

    CAS  Article  Google Scholar 

  6. 6.

    Ding H, Lu SC, Deng YX, DU GX (2007) Trans. Nonferrous Met. Soc. China 17:1100–1104.

    CAS  Article  Google Scholar 

  7. 7.

    F. Stenger, S. Mende, J. Schwedes, and W. Peukert: in Powder Technology, vol. 156, 2005, pp. 103–10.

    CAS  Article  Google Scholar 

  8. 8.

    P. Baláž, M. Achimovičová, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J.M. Criado, F. Delogu, E. Dutková, E. Gaffet, F.J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa: Chem. Soc. Rev, 2013, vol. 42, pp. 7606-10.

    Article  Google Scholar 

  9. 9.

    G. Musci: Chem. Eng. Res. Des. 2019, 148, 460-74.

    Article  Google Scholar 

  10. 10.

    H. Knözinger, P. Ratnasamy: Catalysis Reviews, 1978, vol.17(1), pp.31–70.

    Article  Google Scholar 

  11. 11.

    D. Panias, I. Paspaliaris: Erzmetall. 1999, vol.52(11), pp. 585-95

    CAS  Google Scholar 

  12. 12.

    T.C. Alex, R. Kumar, S.K. Roy, and S.P. Mehrotra: Powder Technol., 2011, vol. 208, pp. 128–36.

    CAS  Article  Google Scholar 

  13. 13.

    T.C. Alex, C. Kumar, A.J. Kailath, R. Kumar, S.K. Roy, and S.P. Mehrotra: Metall. Mater. Trans. B, 2011, 42, 592–603

    Article  Google Scholar 

  14. 14.

    M. Kitamura, M. Senna: Adv. Pow. Technol., 2001, vol. 12(2), pp. 215-26

    CAS  Article  Google Scholar 

  15. 15.

    R. Kammel, F. Pawlek, M. J. Kheiri: in Light Metals 1992, E. R. Cutshall, ed., 1992, pp. 91–95.

  16. 16.

    R. Kumar, S. Kumar, T.C. Alex, S. Srikanth, S.P. Mehrotra: in Process innovations using mechanical activation, Experimental and theoretical studies in modern mechanochemistry, F. Delogu and G. Mulas, eds., Transworld Research Network, Trivandrum, 2013, pp 255-72

  17. 17.

    T.C. Alex, R. Kumar, S.K. Roy, and S.P. Mehrotra: Hydrometallurgy, 2013, vol. 137, pp. 23–32.

    CAS  Article  Google Scholar 

  18. 18.

    R. Kumar, T.C. Alex, M.K. Jha, Z.H. Khan, S.P. Mahapatra, C.R. Mishra: in Light Metals 2004, P. Crepeau, ed., The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 2004, pp. 31–34.

  19. 19.

    R. Kumar, T.C Alex, Z.H. Khan, S.P. Mahapatra, S. P. Mehrotra: in Light Metals 2005, H. Kvande, ed., The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 2005, pp. 77–79.

  20. 20.

    TC Alex, Rakesh Kumar: Int. J. Miner Process., 2017, vol.160, pp. 32–8

    CAS  Article  Google Scholar 

  21. 21.

    K. Wefers and C. Misra: Oxides and Hydroxides of Aluminium, Alcoa Technical Paper 19 (Revised), Aluminium Company of America, Pennsylvania.

  22. 22.

    J.T. Kloprogge, L. V. Duong, B.J. Wood, and R.L. Frost: J. Colloid Interface Sci., 2006, vol. 296, pp. 572–6.

    CAS  Article  Google Scholar 

  23. 23.

    A.B. Kiss, G. Keresztury, and L. Farkas: Spectrochim Acta, 1980, vol. 36A, pp.653-8.

    CAS  Article  Google Scholar 

  24. 24.

    S. Musić, D. Dragčević, and S. Popović: Mater. Lett., 1999, vol. 40, pp. 269–74.

    Article  Google Scholar 

  25. 25.

    Y. Noel, R. Demichelis, F. Pascale, P. Ugliengo, R. Orlando, R. Dovesi: Phys. Chem. Miner., 2009, vol. 36, pp. 47–59.

    CAS  Article  Google Scholar 

  26. 26.

    Y. Lu, W.C. Lu, L.M. Zhang, B.H. Yue,X.F. Shang, J.P. Ni: Acta Phys. Chim. Sin., 2009, vol. 25 (7), pp. 1391–6.

    CAS  Google Scholar 

  27. 27.

    S.L. Wang, C.T. Johnston, D.L. Bish, J.L. White, and S.L. Hem: J. Colloid Interface Sci., 2003, vol. 260, pp. 26–35.

    CAS  Article  Google Scholar 

  28. 28.

    R. Demichelis, B. Civalleri, P. D’arco, and R. Dovesi: Int. J. Quantum Chem., 2010, 110, 2260–73.

    CAS  Article  Google Scholar 

  29. 29.

    C. Ma and R.A. Eggleton: Clays and Clay Minerals, 1999, vol.47(2), pp. 181-91.

    CAS  Article  Google Scholar 

  30. 30.

    A.M. Schleicher, B.A. van der Pluijm, and L.N. Warr: Lithosphere, 2012, vol. 4, pp. 209–20.

    Article  Google Scholar 

  31. 31.

    M. Descamps and J.F. Willart: Adv. Drug Deliv. Rev., 2016, vol.100, pp. 51-6.

    CAS  Article  Google Scholar 

  32. 32.

    Liz-Marzán LM, Giersig M (Eds.) Low-Dimensional Systems: Theory, Preparation, and Some Applications. Springer, New York 2003.

    Book  Google Scholar 

  33. 33.

    X. Du, X. Su, Y. Wang, and J. Li: Mater. Res. Bull., 2009, vol. 44, pp. 660–5.

    CAS  Article  Google Scholar 

  34. 34.

    A. C. Coelho, H. Santos, P. K. Kiyohara, K. N. Marcos, P. Santos: Materials Research, 2007, 10(2), 183-9.

    Article  Google Scholar 

  35. 35.

    Y. Hotta, T. Shirai, K. Sato, H. Yilmaz, and K. Watari: J. Am. Ceram. Soc., 2009, vol. 92, pp. 1198–202.

    CAS  Article  Google Scholar 

  36. 36.

    G. Lefèvre, M. Duc, P. Lepeut, R. Caplain, and M. Fédoroff: Langmuir, 2002, vol. 18, pp. 7530–7.

    Article  Google Scholar 

  37. 37.

    A.D. Styrkas and N.G. Nikishina: Russ. J. Inorg. Chem., 2009, vol. 54, pp. 961–8.

    Article  Google Scholar 

  38. 38.

    A.D. Styrkas and N.G. Nikishina: High Energy Chem., 2007, vol. 41, pp. 396–402.

    CAS  Article  Google Scholar 

  39. 39.

    A.D. Styrkas: Russ. J. Inorg. Chem., 2011, vol. 56, pp. 1029–31.

    CAS  Article  Google Scholar 

  40. 40.

    K. Koichumanova, K.B. Gupta, L. Lefferts, B.L. Mojet, and K. Seshan: Phys. Chem. Chem. Phys., 2015, 17, 23795–804.

    CAS  Article  Google Scholar 

  41. 41.

    X. Carrier, E. Marceau, J.F. Lambert, and M. Che: J. Colloid Interface Sci., 2007, vol. 308, pp. 429–37.

    CAS  Article  Google Scholar 

Download references


The authors acknowledge Prof. S.P. Mehrotra (Indian Institute of Technology Gandhinagar, Gujarat, India) and Prof. S.K. Roy (Indian Institute of Technology Kharagpur, West Bengal, India) for their valuable inputs. Authors are also thankful to Mr. Manoranjan Jena for his help in TEM analysis. Graphic support from Mr. Nimai Halder is highly appreciated. The authors also acknowledge the support and encouragement from Dr. I. Chattoraj (Director, CSIR-National Metallurgical Laboratory, Jamshedpur, India) and his predecessor, Dr. S. Srikanth.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information



Corresponding author

Correspondence to T. C. Alex.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 22, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alex, T.C., Kailath, A.J. & Kumar, R. Al-Monohydrate (Boehmite) to Al-Trihydrate (Bayerite/Gibbsite) Transformation During High-Energy Milling. Metall Mater Trans B 51, 443–451 (2020).

Download citation