An Innovative Process for Production of Ti Metal Powder via TiSx from TiN

Abstract

This work presents a new processing concept for production of Ti metal powder from FeTiO3via TiN and TiSx. Because FeTiO3 can be converted to TiN by the carbothermal reduction and nitridation method, TiN was taken as the starting material. Ti2.45S4 and TiS2 powders were completely formed from TiN at 1473 K (1200 °C) in 3.6 and 10.8 ks, respectively. Either CS2 or S2 gas could be used for the sulfurization process. The sulfides were then converted to α-Ti metal powders by the Ono and Suzuki (OS) process in molten CaCl2 with a small addition of CaS. Employing S2 gas in the sulfurization step remarkably reduced the carbon contamination to 0.01 and 0.1 wt pct C after the sulfurization and reduction processes, respectively. α-Ti powders with spherical morphology and foil-like Ti sheets containing less than 0.15 wt pct O were obtained from the electrochemical reduction in molten CaCl2-0.5 mol pct CaS. The approach applied here offers a promising strategy to design an innovative process for production of commercial grade Ti powders via TiSx and TiN from FeTiO3 by nitridation, sulfurization, and OS processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. 2.

    LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. 1.

    1. W. Kroll: Trans. Electrochem Soc., 1940, vol. 78, pp. 35–47.

    Article  Google Scholar 

  2. 2.

    2. E. Ahmadi, S.A. Rezan, N. Baharun, S. Ramakrishnan, A. Fauzi, and G. Zhang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2354–66.

    Article  Google Scholar 

  3. 3.

    3. R.O. Suzuki, K. Teranuma, and K. Ono: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 287–95.

    CAS  Article  Google Scholar 

  4. 4.

    4. R.O. Suzuki and S. Inoue: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 277–85.

    CAS  Article  Google Scholar 

  5. 5.

    5. C. Schwandt, G.R. Doughty, and D.J. Fray: Key Eng. Mater., 2010, vol. 436, pp. 13–25.

    CAS  Article  Google Scholar 

  6. 6.

    6. K. Ono and R.O. Suzuki: JOM, 2002, vol. 54, pp. 59–61.

    CAS  Article  Google Scholar 

  7. 7.

    7. E. Ahmadi, A. Fauzi, H. Hussin, N. Baharun, K.S. Ariffin, and S.A. Rezan: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 444–54.

    CAS  Article  Google Scholar 

  8. 8.

    E. Ahmadi, SA. Hamid, H.B. Hussin, N.B. Baharun, S. Ramakrishnan, K.S.B. Ariffin, and M.N.A. Fauzi: INROADSInt. J. Jaipur Nat. Univ., 2016, vol. 5, pp. 11–16.

    Google Scholar 

  9. 9.

    9. E. Ahmadi, N.I. Shoparwe, N. Ibrahim, S.A.R. Sheikh Abdul Hamid, N. Baharun, K.S. Ariffin, H. Hussin, and M.N. Ahmad Fauzi: Extraction 2018, Springer International Publishing, Cham, 2018, pp. 1383–96.

    Google Scholar 

  10. 10.

    10. E. Ahmadi, Y. Yashima, R.O. Suzuki, and S.A. Rezan: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1808–21.

    Article  Google Scholar 

  11. 11.

    11. C. Doblin, A. Chryss, and A. Monch: Key Eng. Mater., 2012, vol. 520, pp. 95–100.

    CAS  Article  Google Scholar 

  12. 12.

    12. C. Doblin, D. Freeman, and M. Richards: Key Eng. Mater., 2013, vol. 551, pp. 37–43.

    Article  Google Scholar 

  13. 13.

    13. V. Duz, M. Matviychuk, A. Klevtsov, and V. Moxson: Met. Powder Rep., 2017, vol. 72, pp. 30–38.

    Article  Google Scholar 

  14. 14.

    V. Duz, V.S. Moxson, A.G. Klevtsov, and V. Sukhoplyuyev: Titanium USA 2013 Conf. Proc., International Titanium Association (ITA), Las Vegas, NV, 2013, p. 189.

  15. 15.

    15. Q. Wang, J. Song, J. Wu, S. Jiao, J. Hou, and H. Zhu: Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 8086–91.

    CAS  Article  Google Scholar 

  16. 16.

    J.C. Withers, J. Laughlin, and R.O. Loutfy: Light Metals 2007, TMS Annual Meeting, Orlando, FL, 2007, TMS, Warrendale, PA, 2007.

  17. 17.

    17. J.C. Withers, R.O. Loutfy, and J.P. Laughlin: Mater. Technol., 2007, vol. 22, pp. 66–70.

    CAS  Article  Google Scholar 

  18. 18.

    18. D. Jewell, S. Jiao, M. Kurtanjek, and D.J. Fray: Titanium 2012, International Titanium Association, Atlanta, GA, 2012.

    Google Scholar 

  19. 19.

    19. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.

    CAS  Article  Google Scholar 

  20. 20.

    20. K.S. Mohandas and D.J. Fray: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 685–99.

    CAS  Article  Google Scholar 

  21. 21.

    21. S. Jiao and D.J. Fray: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 74–79.

    CAS  Article  Google Scholar 

  22. 22.

    22. H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki: Electrochemistry, 2018, vol. 86, pp. 82–87.

    CAS  Article  Google Scholar 

  23. 23.

    23. C. Schwandt and D.J. Fray: Electrochim. Acta, 2005, vol. 51, pp. 66–76.

    CAS  Article  Google Scholar 

  24. 24.

    24. T. Matsuzaki, R.O. Suzuki, S. Natsui, T. Kikuchi, and M. Ueda: Mater. Trans., 2019, vol. 60, pp. 411–15.

    Article  Google Scholar 

  25. 25.

    25. T. Matsuzaki, R.O. Suzuki, S. Natsui, T. Kikuchi, and M. Ueda: Mater. Trans., 2019, vol. 60, pp. 386–90.

    Article  Google Scholar 

  26. 26.

    26. N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki: ECS Trans., 2016, vol. 75, pp. 507–15.

    CAS  Article  Google Scholar 

  27. 27.

    27. N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki: Mater. Trans., 2017, vol. 58, pp. 367–70.

    CAS  Article  Google Scholar 

  28. 28.

    28. S.K. Basu and M. Taniguchi: Thermochim. Acta, 1986, vol. 109, pp. 253–65.

    CAS  Article  Google Scholar 

  29. 29.

    29. R.O. Suzuki, N. Suzuki, Y. Yashima, S. Natsui, and T. Kikuchi: Extraction 2018, Springer International Publishing, Cham, 2018, pp. 763–71.

    Google Scholar 

  30. 30.

    30. T. Kikuchi, M. Yoshida, S. Matsuura, S. Natsui, E. Tsuji, H. Habazaki, and R.O. Suzuki: J. Phys. Chem. Solids, 2014, vol. 75, pp. 1041–48.

    CAS  Article  Google Scholar 

  31. 31.

    31. R.O. Suzuki: J. Phys. Chem. Solids, 2005, vol. 66, pp. 461–65.

    CAS  Article  Google Scholar 

  32. 32.

    32. M. Ohta, S. Satoh, T. Kuzuya, S. Hirai, M. Kunii, and A. Yamamoto: Acta Mater., 2012, vol. 60, pp. 7232–40.

    CAS  Article  Google Scholar 

  33. 33.

    A. Roine: “Outokumpu HSC Chemistry for Windows, Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. Outokumpu Research Oy, Pori, HSC Ver. 8.08, 2014.

  34. 34.

    34. W. Hofmann and A. Schrader: Arch. Eisenhuettenwes., 1936, vol. 10, pp. 65–66.

    CAS  Google Scholar 

  35. 35.

    35. L.J. Norrby and H.F. Franzen: J. Solid State Chem., 1970, vol. 2, pp. 36–41.

    CAS  Article  Google Scholar 

  36. 36.

    36. J.R. Dahn, W.R. McKinnon, R.R. Haering, W.J.L. Buyers, and B.M. Powell: Can. J. Phys., 1980, vol. 58, pp. 207–13.

    CAS  Article  Google Scholar 

  37. 37.

    37. H. Okamoto: Desk Handbook: Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, 2000, p. 742.

    Google Scholar 

  38. 38.

    38. R.O. Suzuki, N. Noguchi, Y. Haraguchi, S. Natsui, and T. Kikuchi: ECS Trans., 2018, vol. 86, pp. 45–53.

    CAS  Article  Google Scholar 

  39. 39.

    39. E. Long, S. O’Brien, E.A. Lewis, E. Prestat, C. Downing, C.S. Cucinotta, S. Sanvito, S.J. Haigh, and V. Nicolosi: NPJ 2D Mater. Appl., 2017, vol. 1, pp. 1–9.

    Article  Google Scholar 

  40. 40.

    40. Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free: Int. Mater. Rev., 2018, vol. 63, pp. 407–59.

    CAS  Article  Google Scholar 

  41. 41.

    41. O. Kanou, N. Fukada, and S. Takenaka: J. Jpn. Soc. Powder Powder Metall., 2017, vol. 64, pp. 295–99.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The financial support from Grants-in-Aid for Scientific Research (KAKENHI 17H03434 and 18F18054), a Research Grant from the Japan Mining Industry Association, a Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship (P18054), and the kind support from the International Affairs of Engineering, Hokkaido University, are gratefully acknowledged. The authors also express their appreciation to Messrs. Hiromi Noguchi, Takumi Kaneko, Yuta Yashima, and Yasushi Haraguchi for their technical assistance in the experiments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryosuke O. Suzuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 8, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, E., Suzuki, R.O. An Innovative Process for Production of Ti Metal Powder via TiSx from TiN. Metall Mater Trans B 51, 140–148 (2020). https://doi.org/10.1007/s11663-019-01730-w

Download citation