Formation and Evolution of Non-metallic Inclusions in Ti-Bearing Al-Killed Steel During Secondary Refining Process


Industrial and laboratory experiments were carried out to investigate the formation and evolution of the inclusions in Ti-bearing Al-killed steel, and thermodynamic calculations were also conducted to check the stability of inclusions in steel. It is found that the addition of Ti influences the inclusions evidently. Before Ti addition, the inclusions transform along the route of “Al2O3 → MgO·Al2O3 spinel → CaO-Al2O3(-MgO) system” with the generation of dissolved Mg and Ca in liquid steel. When there is no sufficient Ca in liquid steel, the addition of Ti during refining process would lead to the transformation of MgO·Al2O3 spinel inclusions into MgO-Al2O3-TiOx inclusions. When a trace of dissolved Ca is formed, CaO-Al2O3-TiOx system inclusions can be generated from MgO-Al2O3-TiOx inclusions or CaO-Al2O3 inclusions. Higher calcium content originated from calcium treatment would result in the formation of CaO·TiO2 inclusions, and then weaken the castability of Ti-bearing Al-killed steel grades. Calcium treatment could also increase the frequency of macro-inclusions in steel, and evidently decline the quality of the steel. Cancellation of calcium treatment is suggested to improve the cleanliness of Ti-bearing Al-killed steel grades.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    W. Saikaly, L. Charrin, A. Charaï, X. Bano, and C. Issartel: Metall. Mater. Trans. A, 2000, vol. 32, pp.1939-47.

    Google Scholar 

  2. 2.

    L. M. Peng and Z. H. Li: J. Mater. Sci., 2006, vol. 41, pp. 7524-29.

    CAS  Article  Google Scholar 

  3. 3.

    J. J. Pak, J. O. Jo, S. I. Kim, T. I. Chung, S. M. Seo, J. H. Park, and D. S. Kim: ISIJ Int., 2007, vol. 1, pp. 16-24.

    Article  Google Scholar 

  4. 4.

    S. Basu, S. K. Choudhary, and N. U. Girase: ISIJ Int., 2004, vol. 10, pp.1653-60.

    Article  Google Scholar 

  5. 5.

    L. M. Akselrod, V. M. Parshin, and E. F. Mazurov: Steel in Translation, 2007, vol. 4, pp. 370-74.

    Article  Google Scholar 

  6. 6.

    G. Qian and G. Cheng: in AISTech 2014, Association for Iron & Steel Technology, Indianapolis, USA, 2014; vol. 2, pp. 1823–29.

  7. 7.

    H. Zheng, W. Chen, and Y Hu: in AISTech 2004, Association for Iron & Steel Technology, Nashville, USA, 2004, vol. 1, pp. 937–45.

  8. 8.

    Z. Y. Deng, M. Y. Zhu, Y. L. Zhou and D. Sichen: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2015–25.

    Article  CAS  Google Scholar 

  9. 9.

    K. Wasai, K. Mukal, and A. Miyanaga: ISIJ Int., 2002, vol. 42, pp. 459-66.

    CAS  Article  Google Scholar 

  10. 10.

    M. K. Sun, I. H. Jung, and H. G. Lee: Metals Mater. Int., 2008, vol. 14, pp. 791-98.

    CAS  Article  Google Scholar 

  11. 11.

    W. C. Doo, D. Y. Kim, S. C. Kang, and K. W. Yi: Metals Mater. Int., 2007, vol. 13, pp. 249-55.

    CAS  Article  Google Scholar 

  12. 12.

    I. H. Jung, S. A. Decterov, and A. D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35, pp. 493-507.

    CAS  Article  Google Scholar 

  13. 13.

    C. Wang, N. T. Nuhfer, and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40, pp. 1022-34.

    CAS  Article  Google Scholar 

  14. 14.

    M. Jiang, X. Wang, B. Chen, and W. Wang: ISIJ Int., 2010, vol. 50, pp. 95-104.

    CAS  Article  Google Scholar 

  15. 15.

    Y. Ehara, S. Yokoyama, M. Kawakami: Tetsu-to-Hagané, 2007, vol. 93, pp. 208-14.

    CAS  Article  Google Scholar 

  16. 16.

    J. H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-46.

    CAS  Article  Google Scholar 

  17. 17.

    K. Beskow, J. Jia, C. H. P. Lupis, et al: Ironmak. Steelmak., 2002, vol. 29, pp. 427-35.

    CAS  Article  Google Scholar 

  18. 18.

    Z. Y. Deng and M. Y. Zhu: ISIJ Int., 2013, vol. 53, pp. 450-58.

    CAS  Article  Google Scholar 

  19. 19.

    Z. Y. Deng, M. Y. Zhu, and D. Sichen: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3158-67.

    Article  CAS  Google Scholar 

  20. 20.

    Y. G. Chi, Z. Y. Deng, and M. Y. Zhu: Steel Res. Int., 2017, vol. 88, pp.1600470.

    Article  CAS  Google Scholar 

  21. 21.

    L. Z. Kong, Z. Y. Deng, and M. Y. Zhu: ISIJ Int., 2017, vol. 57, pp. 1537-45.

    CAS  Article  Google Scholar 

  22. 22.

    H. Zheng and W. Chen: J. Univ. Sci. Tech. Beijing, 2006, vol.13, pp. 16-20.

    CAS  Article  Google Scholar 

  23. 23.

    J. H. Park, S. B. Lee, and H. R. Gaye: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 853–61.

    CAS  Article  Google Scholar 

  24. 24.

    S. Li, Z. Huang, Z. Jiang, Y. Li, H. Chi, and Z. Chen: Adv. Mater. Res., 2010, vol. 146-147, pp. 1440-45.

    Google Scholar 

  25. 25.

    J. Li, G. Cheng, Q. Ruan, J. Li, J. Pan, and X. Chen: ISIJ Int., 2018, vol. 58, pp. 1042–51.

    CAS  Article  Google Scholar 

  26. 26.

    J. Li, G. Cheng, Q. Ruan, J. Pan, and X. Chen: ISIJ Int., 2018, vol. 58, pp. 2280–87.

    CAS  Article  Google Scholar 

  27. 27.

    J. Li, G. Cheng, Q. Ruan, J. Pan, and X. Chen (2019) Ironmak. Steelmak., DOI: 10.1080/03019233.2019.1568367.

    Article  Google Scholar 

  28. 28.

    Y. Ren, L. Zhang, W. Yang, and H. Duan: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2057–71.

    Article  CAS  Google Scholar 

  29. 29.

    T. Zhang, C. Liu, and M. Jiang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2253–62.

    Article  CAS  Google Scholar 

  30. 30.

    X. Zou, D. Zhao, J. Sun, W. Cong, and H. Matsuura: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 481–89.

    Article  CAS  Google Scholar 

  31. 31.

    T. Zhang, C. Liu, H. Wu, Y. Li and M. Jiang: Ironmak. Steelmak., 2018, vol. 45, pp. 187-93.

    CAS  Article  Google Scholar 

  32. 32.

    Y. Li, T. Zhang, and H. Duan: Metals, 2019, vol. 9, pp. 104.

    CAS  Article  Google Scholar 

  33. 33.

    W.Y. Cha, T. Nagasaka, T. Miki, Y. Sasaki, and M. Hino: ISIJ Int., 2006, vol. 46, pp. 996–1005.

    CAS  Article  Google Scholar 

  34. 34.

    S. H. Seok, T. Miki, and M. Hino: ISIJ Int., 2011, vol. 51, pp. 566-72.

    CAS  Article  Google Scholar 

  35. 35.

    H. Itoh, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1997, vol. 83, pp. 773-78.

    CAS  Article  Google Scholar 

  36. 36.

    H. Itoh, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1997, vol. 83, pp. 623-28.

    CAS  Article  Google Scholar 

  37. 37.

    H. Itoh, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1997, vol. 83, pp. 695-700.

    CAS  Article  Google Scholar 

  38. 38.

    T. Hong and T. Debroy: Scr. Mater., 2001, vol. 44, pp. 847–52.

    CAS  Article  Google Scholar 

  39. 39.

    H. R. Rein and J. Chipman: Trans. Metall. Soc. AIME, 1965, vol. 233, pp. 415.

    CAS  Google Scholar 

  40. 40.

    K. Nagata, J. Tanabe and K. S. Goto: Tetsu-to-Hagané, 1989, vol.75, pp. 2023–30.

    CAS  Article  Google Scholar 

  41. 41.

    E. T. Turkdogan: Physical Chemistry of High temperature Technology. Academic Press, New York, NY, 1980, pp. 8.

    Google Scholar 

  42. 42.

    H. Matsuura, C. Wang, G. Wen, and S. Sridhar: ISIJ Int., 2007, vol. 47, pp. 1265–74.

    CAS  Article  Google Scholar 

  43. 43.

    H. Ono, K. Nakajima, R. Maruo, S. Agawa, and T. Usui: ISIJ Int., 2009, vol. 49, pp. 957-64.

    CAS  Article  Google Scholar 

  44. 44.

    G.K. Sigworth, J.F. Elliott: Met. Sci., vol. 8, pp. 298-310 (1974)

    CAS  Article  Google Scholar 

  45. 45.

    S. K. Jo, S. H. Kim, and B. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 703–09.

    CAS  Article  Google Scholar 

  46. 46.

    X. Yin, Y. Sun, Y. Yang, X. Bai, M. Barati, and A. Mclean: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3274–84.

    Article  CAS  Google Scholar 

  47. 47.

    W. Zheng, Z.Wu, G. Li, Z. Zhang, and C. Zhu: ISIJ Int., 2014, vol. 54, pp. 1755–64.

    CAS  Article  Google Scholar 

  48. 48.

    C.-W. Seo, S.-H. Kim, S.-K. Jo, M.-O. Suk, and S.-M. Byun: Metall. Mater. Trans. B, 2010, vol. 41B, pp.790–97.

    CAS  Article  Google Scholar 

  49. 49.

    Z.W. Hou, M. Jiang, E.J. Yang, and X. H. Wang: in 7th Int. Cong. Sci. Tech. Steelmak (ICS 2018), Associazione Italiana di Metallurgia, Venice, Italy, 2018, pp. ICS 063.

Download references


The authors are grateful to The National Key R&D Program of China (Grant No. 2017YFB0304100) and the Fundamental Research Funds for the Central Universities (Grant No. N182504016) as well as China Postdoctoral Science Foundation (Grant No. 2019M651131) for the financial support of the present study.

Author information



Corresponding author

Correspondence to Zhiyin Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 28, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Chen, L., Song, G. et al. Formation and Evolution of Non-metallic Inclusions in Ti-Bearing Al-Killed Steel During Secondary Refining Process. Metall Mater Trans B 51, 173–186 (2020).

Download citation